Kuiper's theorem and operator algebras

E. Troitsky ¹

Moscow Center for Fundamental and Applied Mathematics, MSU Department, Dept. of Mech. and Math., Lomonosov Moscow State University

The First Harbin-Moscow Conference on Analysis July 28–29, 2022

¹The work is supported by the Russian Science Foundation under grant 21-11-00080.

E.Troitsky (Moscow State University)

Kuiper's theorem and operator algebras

Outline I

Kuiper's theorem and Hilbert C*-modules Relation to K-theory

- Uniform Roe algebras
- Spaces with Kuiper property
- Non-Kuiper spaces

The 14 at 14

4 A 1

First ideas

Kuiper's theorem says:

Theorem

For a separable Hilbert space H, the group of invertible operators $GL(\mathbb{B}(H)) \subset \mathbb{B}(H)$ is contractible in the operator norm.

We will give an idea of its proof, slightly distinct from the original, but more adopted for generalizations.

First, $GL(\mathbb{B}(H))$ is an open set in a Banach space, hence it has the homotopy type of a CW-complex. Thus, it is contractible \Leftrightarrow any $f: S \to GL(\mathbb{B}(H))$ can be deformed to $S \to \mathbf{1} \in GL(\mathbb{B}(H))$, where *S* is a finite polyhedron (sphere). Since $GL(\mathbb{B}(H))$ is open, we can also deform the image f(S) to a finite polyhedron with arbitrary small simplices. Suppose, F^1, \ldots, F^s are its vertices. In fact we will work with them and verify that the homotopy is extendable to the entire set f(S).

First ideas

Kuiper's theorem says:

Theorem

For a separable Hilbert space H, the group of invertible operators $GL(\mathbb{B}(H)) \subset \mathbb{B}(H)$ is contractible in the operator norm.

We will give an idea of its proof, slightly distinct from the original, but more adopted for generalizations.

First, $GL(\mathbb{B}(H))$ is an open set in a Banach space, hence it has the homotopy type of a CW-complex. Thus, it is contractible \Leftrightarrow any $f: S \to GL(\mathbb{B}(H))$ can be deformed to $S \to \mathbf{1} \in GL(\mathbb{B}(H))$, where *S* is a finite polyhedron (sphere). Since $GL(\mathbb{B}(H))$ is open, we can also deform the image f(S) to a finite polyhedron with arbitrary small simplices. Suppose, F^1, \ldots, F^s are its vertices. In fact we will work with them and verify that the homotopy is extendable to the entire set f(S).

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Second step

Fix an orthonormal base e_i in H (i.e., an identification $H \cong \ell_2$). Let $||F_{ij}^k||$ be the matrix of F^k in this base: $F^k e_i = \sum_j F_{ij}^k e_j$. An arbitrary small perturbation of columns $F^k e_i \in \ell_2$ (simultaneously for all F^k) allows us to suppose that the columns have finitely many non-zero entries, as at the picture:

Using the property, that elements of any row tend to zero, we can find inductively $i_1, j_1, i_2, j_2, ...$ as at the next figure (left). Here the light-blue vectors are of length less a, a/2, ..., for a sufficiently small $a \ge b \ge 200$ E. Troitsky (Moscow State University) Kujer's theorem and operator algebras Harbin-Moscow 22 4/31

Second step

Fix an orthonormal base e_i in H (i.e., an identification $H \cong \ell_2$). Let $||F_{ii}^{k}||$ be the matrix of F^{k} in this base: $F^{k}e_{i} = \sum_{i}F_{ii}^{k}e_{i}$. An arbitrary small perturbation of columns $F^k e_i \in \ell_2$ (simultaneously for all F^k) allows us to suppose that the columns have finitely many non-zero entries, as at the picture:

Using the property, that elements of any row tend to zero, we can find inductively $i_1, j_1, i_2, j_2, \dots$ as at the next figure (left). Here the light-blue vectors are of length less $a, a/2, \ldots$, for a sufficiently small $a \ge 1$

E.Troitsky (Moscow State University)

Kuiper's theorem and operator algebras

Harbin-Moscow'22

Third step

Then we can consider a linear homotopy of light-blue part to zero and obtain the following picture:

イロト イポト イヨト イヨト

э

Sac

The new $F(e_{j_1})$, $F(e_{j_2})$, ... are in purple. We can rotate them to e_{i_1} , e_{i_2} , ... respectively, in orthogonal subspaces, which are "separated" by blue lines. And after that rotate e_{i_k} to e_{j_k} and arrive to a family (we denote the new operators still by *F* at each stage) of the following form.

Fifth step

For H_J generated by e_{j_k} and the orthogonal decomposition $H = (H_J)^{\perp} \oplus H_J$ (both summands are isomorphic to ℓ_2), we have

$$F = \begin{pmatrix} F' & 0 \\ F'' & 1 \end{pmatrix}$$
, and $\begin{pmatrix} F' & 0 \\ t\dot{F}'' & 1 \end{pmatrix}$ gives a path to $\begin{pmatrix} F' & 0 \\ 0 & 1 \end{pmatrix}$

Decompose $H_J = H_0 \oplus H_1 \oplus \cdots$ into an orthogonal sum with each $H_i \cong \ell_2$. So, $F = diag(F', 1, 1, 1, 1, \dots)$. Connect $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} F'(F')^{-1} & 0 \\ 0 & 1 \end{pmatrix}$ at each summand $H_{2i} \oplus H_{2i+1}$ with $\begin{pmatrix} (F')^{-1} & 0 \\ 0 & F' \end{pmatrix}$ via the homotopy, for $t \in [0, \pi/2]$,

 $\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} F' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} (F')^{-1} & 0 \\ 0 & 1 \end{pmatrix}.$

イロト イポト イヨト イヨト

7/31

Fifth step

For H_J generated by e_{j_k} and the orthogonal decomposition $H = (H_J)^{\perp} \oplus H_J$ (both summands are isomorphic to ℓ_2), we have

$$F = \begin{pmatrix} F' & 0 \\ F'' & 1 \end{pmatrix}$$
, and $\begin{pmatrix} F' & 0 \\ t\dot{F}'' & 1 \end{pmatrix}$ gives a path to $\begin{pmatrix} F' & 0 \\ 0 & 1 \end{pmatrix}$

Decompose $H_J = H_0 \oplus H_1 \oplus \cdots$ into an orthogonal sum with each $H_i \cong \ell_2$. So, F = diag(F', 1, 1, 1, ...). Connect $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} F'(F')^{-1} & 0 \\ 0 & 1 \end{pmatrix}$ at each summand $H_{2i} \oplus H_{2i+1}$ with $\begin{pmatrix} (F')^{-1} & 0 \\ 0 & F' \end{pmatrix}$ via the homotopy, for $t \in [0, \pi/2]$, $\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} F' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} (F')^{-1} & 0 \\ 0 & 1 \end{pmatrix}$.

イロト イポト イヨト イヨト 二日

7/31

The resulting operator is $diag(F', (F')^{-1}, F', (F')^{-1}, ...)$. Applying the above homotopy in the inverse direction for sums $H_J \oplus H_0$, $H_1 \oplus H_2$, ... we arrive to $\mathbf{1} \in GL(\mathbb{B}(H))$ and the theorem is proved.

Definition

A Hilbert *C*^{*}-module is a (right) Banach *A*-module *M* over a *C*^{*}-algebra *A*, equipped with an *A*-valued inner product $M \times M \to A$, $(m, n) \mapsto \langle m, n \rangle$ (with natural properties like $\langle m, n \rangle = \langle n, m \rangle^*$) such that the norm is given by $||m|| = ||\langle m, m \rangle||^{1/2}$.

We will be interested in the module H_A , or $\ell_2(A)$, formed by all sequences $(a_1, a_2, ...)$, $a_i \in A$, such that $\sum_i (a_i)^* a_i$ is norm-convergent in A and

$$\langle (a_1, a_2, \ldots), (b_1, b_2, \ldots) \rangle = \sum_i (a_i)^* b_i.$$

There are the following main differences of Hilbert C^* -modules and Hilbert spaces:

In the second submodule has an orhogonal complement.

Hilbert C*-modules vs Hilbert spaces (continuation)

Example

Let $\mathcal{A} = C[0, 1]$ be a Hilbert C^* -module over itself with the inner product a^*b . Then $C_0(0, 1]$ is a proper closed submodule. But its orthogonal complement is trivial.

Example

For the same \mathcal{A} , one can consider an \mathcal{A} -functional, i.e. a morphism from $H_{\mathcal{A}}$ to \mathcal{A} , defined as $(a_1, a_2, ...) \mapsto \sum_i f_i a_i$, where f_i are positive functions of norm 1 with non-intersecting supports. It is easy to see, that this is a bounded morphism (of norm 1) without an adjoint operator.

So, we have for $H_{\mathcal{A}}$ two algebras: $\mathbb{B}(H_{\mathcal{A}})$ and $\mathbb{B}^*(H_{\mathcal{A}})$. Fortunately (at least for unital \mathcal{A}) we see, that a line of matrix becomes a column of the adjoint (plus conjugation), hence an element of $H_{\mathcal{A}}$. So the norm of elements in a line tends to zero. This is sufficient to apply the above approach in this situation and obtain a simple proof of:

E.Troitsky (Moscow State University)

Kuiper's theorem and operator algebras

10/31

Theorem (Cuntz-Higson)

Suppose, A is σ -unital. Then $GL(\mathbb{B}^*(H_A))$ is contractible.

For a unital \mathcal{A} , this was obtained simultaneously by several authors, including myself.

For $GL(\mathbb{B}(H_{\mathcal{A}}))$ there are only partial results. In particular, we have proved the contractibility for $\mathcal{A} = C(X)$, where X is a finite-dimensional space and for $\mathcal{A} = \mathcal{K} \oplus \mathbb{C}$, where \mathcal{K} is the algebra of compact operators,

Theorem (Cuntz-Higson)

Suppose, A is σ -unital. Then $GL(\mathbb{B}^*(H_A))$ is contractible.

For a unital A, this was obtained simultaneously by several authors, including myself.

For $GL(\mathbb{B}(H_{\mathcal{A}}))$ there are only partial results. In particular, we have proved the contractibility for $\mathcal{A} = C(X)$, where X is a finite-dimensional space and for $\mathcal{A} = \mathcal{K} \oplus \mathbb{C}$, where \mathcal{K} is the algebra of compact operators,

Outline

Classical Kuiper's theorem

Kuiper's theorem and Hilbert C*-modulesRelation to K-theory

Manuilov algebras on Hilbert C*-modules

4 Roe algebras and Kuiper property for spaces

- Uniform Roe algebras
- Spaces with Kuiper property
- Non-Kuiper spaces

< All

The 14 at 14

12/31

The Kuiper theorems have the main application in *K*-theory and index theory as the key ingredient of the proof that the space of Fredholm operators \mathcal{F} (respectively, the space of Mishchenko-Fomenko Fredholm operators $\mathcal{F}_{\mathcal{A}}$) is the classifying space for K(X) (respectively, for $K(X; \mathcal{A})$)):

 $K(X) \cong [X, \mathcal{F}], \qquad K(X; \mathcal{A}) \cong [X, \mathcal{F}_{\mathcal{A}}].$

In particular, the index of Fredholm operators

index : $\mathcal{F} \to \mathbb{Z}$, index_{\mathcal{A}} : $\mathcal{F}_{\mathcal{A}} \to \mathcal{K}(\mathcal{A})$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

13/31

is a bijection on the connected components of the set of Fredholm operators.

Manuilov algebra

In [V. Manuilov, 2019, JMAA] the following *C**-algebra was introduced. Let *H* be a separable Hilbert space with a fixed orthonormal basis $\{e_n\}_{n\in\mathbb{N}}$. For $k\in\mathbb{N}$, denote by $\mathbb{B}_L^{(k)}(H)$ (resp. $\mathbb{B}_C^{(k)}(H)$) the set of all bounded operators on *H* such that each line (resp. each column) of their matrix (with respect to the fixed basis) contains no more than *k* non-zero entries. Note that

$$\mathbb{B}^{(k)}_L(H) \subset \mathbb{B}^{(I)}_L(H)$$
 when $k < I$, and $\mathbb{B}^{(k)}_C(H) = (\mathbb{B}^{(k)}_L(H))^*.$

Set also

$$\mathbb{B}^{(k)}(H) = \mathbb{B}^{(k)}_L(H) \cap \mathbb{B}^{(k)}_C(H).$$

Let $a, b \in \mathbb{B}(H)$, $A = (a_{ij})$, $B = (b_{ij})$ their matrices. Then evidently, if $a, b \in \mathbb{B}_{L}^{(k)}(H)$ then $a + b \in \mathbb{B}_{L}^{(2k)}(H)$. A more interesting property from V. Manuilov's paper is:

Lemma

If
$$a, b \in \mathbb{B}_{L}^{(k)}(H)$$
 then $ab \in \mathbb{B}_{L}^{(k^{2})}(H)$.

Proof.

Let $c_{il} = \sum_{j \in \mathbb{N}} a_{ij}b_{jl}$. Fix *i*. There exist $j_1, \ldots, j_k \in \mathbb{N}$ such that $a_{ij} = 0$ if $j \notin \{j_1, \ldots, j_k\}$. For each $j_m, m = 1, \ldots, k$, there exist $l_1^{(m)}, \ldots, l_k^{(m)} \in \mathbb{N}$ such that $b_{j_m l} = 0$ if $l \notin \{l_1^{(m)}, \ldots, l_k^{(m)}\}$. So $c_{il} = 0$ for $l \notin \{l_n^{(m)}\}_{n,m=1}^k$, hence the *i*-th line contains no more than k^2 non-zero entries.

Let $\mathbb{B}_{f}(H)$ is the norm-closure of $\bigcup_{k} \mathbb{B}^{(k)}(H)$. This is a *C**-algebra. V. Manuilov has proved (among the other statements) that the group of invertibles is contractible.

Generalizations to Hilbert C*-modules

For the Hilbert C^* -module H_A (it is natural to consider a unital A) we can consider several generalizations: strong ones and weak ones.

Definition

Denote by $\mathbb{B}_{L}^{(k)}(H_{\mathcal{A}})$ the set of operators in $\mathbb{B}(H_{\mathcal{A}})$ having no more than k non-zero elements in each line of their matrices, and by $\mathbb{B}_{C}^{(k)}(H_{\mathcal{A}})$ the set of operators in $\mathbb{B}(H_{\mathcal{A}})$ having no more than k non-zero elements in each column of their matrices. Put $\mathbb{B}^{(k)}(H_{\mathcal{A}}) = \mathbb{B}_{L}^{(k)}(H_{\mathcal{A}}) \cap \mathbb{B}_{C}^{(k)}(H_{\mathcal{A}})$ Denote

$$\mathbb{B}_{L}^{\infty}(\mathcal{H}_{\mathcal{A}}) := \bigcup_{k} \mathbb{B}_{L}^{(k)}(\mathcal{H}_{\mathcal{A}}), \quad \mathbb{B}_{C}^{\infty}(\mathcal{H}_{\mathcal{A}}) := \bigcup_{k} \mathbb{B}_{C}^{(k)}(\mathcal{H}_{\mathcal{A}}),$$
$$\mathbb{B}^{\infty}(\mathcal{H}_{\mathcal{A}}) := \bigcup_{k} \mathbb{B}^{(k)}(\mathcal{H}_{\mathcal{A}}).$$

イロト 不得 トイヨト イヨト

Definition

For a positive functional $\varphi : \mathcal{A} \to \mathbb{C}$, denote by φ_a the positive functional $\varphi_a(b) = \varphi(aba^*)$, where $a \in \mathcal{A}$..

Definition

Denote by $W\mathbb{B}_{L}^{(k)}(H_{\mathcal{A}}) \subset \mathbb{B}(H_{\mathcal{A}})$ (weakly having no more than k non-zero elements in line) the set of all operators from $\mathbb{B}(H_{\mathcal{A}})$ such that for any pure state φ on \mathcal{A} and any $d \in \mathcal{A}$ there is no more than k elements in any line of the matrix of the operator, say $a_{i}^{j_{1}}, \ldots, a_{i}^{j_{k}}$ in the i^{th} line, with the property $\varphi_{d}(a_{i}^{j_{s}}(a_{i}^{j_{s}})^{*}) \neq 0$. Similarly, define $W\mathbb{B}_{C}^{(k)}(H_{\mathcal{A}}) \subset \mathbb{B}(H_{\mathcal{A}})$ to be the set of all operators from $\mathbb{B}(H_{\mathcal{A}})$ such that for any pure state φ on \mathcal{A} and any element $d \in \mathcal{A}$, there is no more than k elements in any column of the matrix of the operator, say $a_{j_{1}}^{j_{1}}, \ldots, a_{j_{k}}^{j_{k}}$ in the i^{th} column, with the property $\varphi_{d}((a_{i}^{j_{s}})^{*}a_{i}^{j_{s}}) \neq 0$.

Definition

Denote $W\mathbb{B}^{(k)}(H_{\mathcal{A}}) := W\mathbb{B}^{(k)}_{L}(H_{\mathcal{A}}) \cap W\mathbb{B}^{(k)}_{C}(H_{\mathcal{A}})$ and $W\mathbb{B}^{\infty}_{L}(H_{\mathcal{A}}) := \bigcup_{k} W\mathbb{B}^{(k)}_{L}(H_{\mathcal{A}}), \quad W\mathbb{B}^{\infty}_{C}(H_{\mathcal{A}}) := \bigcup_{k} W\mathbb{B}^{(k)}_{C}(H_{\mathcal{A}}),$ $W\mathbb{B}^{\infty}(H_{\mathcal{A}}) := \bigcup_{k} W\mathbb{B}^{(k)}(H_{\mathcal{A}}).$

Denote by $\mathbb{B}_{L}^{f}(H_{\mathcal{A}})$, $\mathbb{B}_{C}^{f}(H_{\mathcal{A}})$, $\mathbb{B}^{f}(H_{\mathcal{A}})$, $W\mathbb{B}_{L}^{f}(H_{\mathcal{A}})$, $W\mathbb{B}_{C}^{f}(H_{\mathcal{A}})$, and $W\mathbb{B}^{f}(H_{\mathcal{A}})$ the corresponding closures.

Theorem

The algebras $\mathbb{B}_{L}^{f}(H_{\mathcal{A}})$ and $\mathbb{B}^{f}(H_{\mathcal{A}})$ consist of adjointable operators, i.e. are subalgebras of the *C*^{*}-algebra $\mathbb{B}^{*}(H_{\mathcal{A}})$. Moreover, $\mathbb{B}^{f}(H_{\mathcal{A}})$ is an involutive subalgebra, hence a *C*^{*}-algebra. The algebras $\mathbb{B}_{C}^{f}(H_{\mathcal{A}})$, $W\mathbb{B}_{L}^{f}(H_{\mathcal{A}})$, $W\mathbb{B}_{C}^{f}(H_{\mathcal{A}})$, and $W\mathbb{B}^{f}(H_{\mathcal{A}})$ generally contain non-adjointable operators.

3

Theorem

The following groups are contractible:

- $GL(\mathbb{B}^{f}_{C}(H_{\mathcal{A}}) \cap \mathbb{B}^{\star}(H_{\mathcal{A}}))$
- $GL(\mathbb{B}^{f}_{L}(H_{\mathcal{A}}))$
- $GL(\mathbb{B}^{f}(H_{\mathcal{A}}))$
- $GL(W\mathbb{B}^{f}_{C}(H_{\mathcal{A}})\cap\mathbb{B}^{*}(H_{\mathcal{A}}))$
- $GL(W\mathbb{B}^{f}_{L}(H_{\mathcal{A}})\cap\mathbb{B}^{\star}(H_{\mathcal{A}}))$
- $GL(W\mathbb{B}^{f}(H_{\mathcal{A}})) \cap \mathbb{B}^{\star}(H_{\mathcal{A}})$

Theorem

The group $GL(W\mathbb{B}^{f}(H_{\mathcal{A}}))$ is contractible inside $GL(\mathbb{B}(H_{\mathcal{A}}))$.

Outline

Classical Kuiper's theorem

- Kuiper's theorem and Hilbert C*-modules
 Relation to K-theory
 - Manuilov algebras on Hilbert C*-modules

Roe algebras and Kuiper property for spaces

- Uniform Roe algebras
- Spaces with Kuiper property
- Non-Kuiper spaces

< 61 b

The 14 at 14

20/31

Let (X, d) be a (countable) discrete metric space. Then the unit functions supported at one point δ_x , $x \in X$, form the standard base of the corresponding ℓ^2 space $\ell^2(X)$. For a bounded operator $F : \ell^2(X) \to \ell^2(X)$, let $(F_{xy})_{x,y \in X}$ denote the matrix of F with respect to the base $\{\delta_x\}_{x \in X}$.

Definition

Denote by $\mathcal{P}(F)$ the propagation of F, i.e. $\mathcal{P}(F) = \sup\{d(x, z) : x, z \in X, F_{xz} \neq 0\}.$

Note that the triangle inequality $d(x, y) \le d(x, z) + d(z, y)$ implies $\mathcal{P}(FG) \le \mathcal{P}(F) + \mathcal{P}(G)$.

Definition

The C^* -algebra $C^*_u(X)$ generated by operators of finite propagation in the algebra $\mathbb{B}(\ell_2(X))$ of all bounded operators is called the uniform Roe algebra.

E.Troitsky (Moscow State University)

Let (X, d) be a (countable) discrete metric space. Then the unit functions supported at one point δ_x , $x \in X$, form the standard base of the corresponding ℓ^2 space $\ell^2(X)$. For a bounded operator $F : \ell^2(X) \to \ell^2(X)$, let $(F_{xy})_{x,y \in X}$ denote the matrix of F with respect to the base $\{\delta_x\}_{x \in X}$.

Definition

Denote by $\mathcal{P}(F)$ the propagation of F, i.e. $\mathcal{P}(F) = \sup\{d(x, z) : x, z \in X, F_{xz} \neq 0\}.$

Note that the triangle inequality $d(x, y) \le d(x, z) + d(z, y)$ implies $\mathcal{P}(FG) \le \mathcal{P}(F) + \mathcal{P}(G)$.

Definition

The C^* -algebra $C^*_u(X)$ generated by operators of finite propagation in the algebra $\mathbb{B}(\ell_2(X))$ of all bounded operators is called the uniform Roe algebra.

E.Troitsky (Moscow State University)

Kuiper's theorem and operator algebras

Let (X, d) be a (countable) discrete metric space. Then the unit functions supported at one point δ_x , $x \in X$, form the standard base of the corresponding ℓ^2 space $\ell^2(X)$. For a bounded operator $F : \ell^2(X) \to \ell^2(X)$, let $(F_{xy})_{x,y \in X}$ denote the matrix of F with respect to the base $\{\delta_x\}_{x \in X}$.

Definition

Denote by $\mathcal{P}(F)$ the propagation of F, i.e. $\mathcal{P}(F) = \sup\{d(x, z) : x, z \in X, F_{xz} \neq 0\}.$

Note that the triangle inequality $d(x, y) \le d(x, z) + d(z, y)$ implies $\mathcal{P}(FG) \le \mathcal{P}(F) + \mathcal{P}(G)$.

Definition

The C^* -algebra $C^*_u(X)$ generated by operators of finite propagation in the algebra $\mathbb{B}(\ell_2(X))$ of all bounded operators is called the uniform Roe algebra.

E.Troitsky (Moscow State University)

Kuiper's theorem and operator algebras

Let (X, d) be a (countable) discrete metric space. Then the unit functions supported at one point δ_x , $x \in X$, form the standard base of the corresponding ℓ^2 space $\ell^2(X)$. For a bounded operator $F : \ell^2(X) \to \ell^2(X)$, let $(F_{xy})_{x,y \in X}$ denote the matrix of F with respect to the base $\{\delta_x\}_{x \in X}$.

Definition

Denote by $\mathcal{P}(F)$ the propagation of F, i.e. $\mathcal{P}(F) = \sup\{d(x, z) : x, z \in X, F_{xz} \neq 0\}.$

Note that the triangle inequality $d(x, y) \le d(x, z) + d(z, y)$ implies $\mathcal{P}(FG) \le \mathcal{P}(F) + \mathcal{P}(G)$.

Definition

The C^* -algebra $C^*_u(X)$ generated by operators of finite propagation in the algebra $\mathbb{B}(\ell_2(X))$ of all bounded operators is called the uniform Roe algebra.

Definition

If $U(C_u^*(X))$ (equivalently, the group of invertibles of $C_u^*(X)$) is contractible, we say that (X, d) is a Kuiper space.

Proposition

Suppose (X, d) is a finite metric space. Then the group of invertibles in $C_u^*(X)$ is not contractible.

Proof.

In this case $C_u^*(X)$ is the matrix algebra $M_n(\mathbb{C})$, where n = |X|, and its invertibles form the group $GL_n(\mathbb{C})$, which is homotopy equivalent to the unitary group $U_n(\mathbb{C})$. Its fundamental group is not trivial (in fact $\cong \mathbb{Z}$) due to the epimorphism det : $U_n(\mathbb{C}) \to S^1 \subset \mathbb{C}$.

イロト イポト イヨト イヨト

Kuiper property: first statements (continuation)

Proposition

Suppose, (X, d) is an infinite metric space of finite diameter. Then the group of invertibles in $C_u^*(X)$ is contractible.

Proof.

In this case $C_u^*(X) = \mathbb{B}(\ell_2(X))$ and the statement is exactly the original Kuiper theorem.

Proposition

Suppose, $f : (X, d) \to (Y, \rho)$ is a bijection that is a coarse equivalence of metrics (i.e. there exist functions ϕ_1 and ϕ_2 on $[0, \infty)$ with $\lim_{t\to\infty} \phi_i(t) = \infty$, i = 1, 2, such that $\phi_1(d(x, y)) \le \rho(f(x), f(y)) \le \phi_2(d(x, y))$ for any $x, y \in X$). Then $C_u^*(X) \cong C_u^*(Y)$, in particular, Y is a Kuiper space if and only if so is X.

э

Sac

・ロット (日) ・ (日) ・ (日)

Kuiper property: first statements (continuation)

Proposition

Suppose, (X, d) is an infinite metric space of finite diameter. Then the group of invertibles in $C_u^*(X)$ is contractible.

Proof.

In this case $C_u^*(X) = \mathbb{B}(\ell_2(X))$ and the statement is exactly the original Kuiper theorem.

Proposition

Suppose, $f : (X, d) \to (Y, \rho)$ is a bijection that is a coarse equivalence of metrics (i.e. there exist functions ϕ_1 and ϕ_2 on $[0, \infty)$ with $\lim_{t\to\infty} \phi_i(t) = \infty$, i = 1, 2, such that $\phi_1(d(x, y)) \le \rho(f(x), f(y)) \le \phi_2(d(x, y))$ for any $x, y \in X$). Then $C_u^*(X) \cong C_u^*(Y)$, in particular, Y is a Kuiper space if and only if so is X.

э

Definition

We say that a subset Y of (X, d) is r-sparse, if, for any $y \in Y$, $B_r(y) = \{y\}$.

Theorem

Suppose, for any r, there exists a subspace X_r of (X, d) such that

- 1) X_r is a Kuiper space;
- 2) $X \setminus X_r$ is *r*-sparse.

Then X is a Kuiper space.

イロト イポト イヨト イヨト

Outline

Classical Kuiper's theorem

- Kuiper's theorem and Hilbert C*-modules
 Relation to K-theory
 - Manuilov algebras on Hilbert C*-modules
- Roe algebras and Kuiper property for spaces
 Uniform Roe algebras
 - Spaces with Kuiper property
 - Non-Kuiper spaces

< 61 b

The 14 at 14

One can prove that the following two properties are equivalent:

Definition

We say that a discrete metric space (X, d) is PIUBS (has a countable partition by infinite uniformly bounded sets) if there exists a sequence of its points $\{x(k)\}_{k\in\mathbb{N}}$, a finite number r > 0, and a collection of sets $D_k \subset X$ such that

1 $\{D_k\}_{k\in\mathbb{N}}$ is a partition of *X*;

a each D_k contains infinitely many points.

and

イロト イポト イヨト イヨト

3

26/31

Definition

We say that a discrete metric space (X, d) is CIUBB (has a cover by infinite uniformly bounded balls) if there exists a sequence of its points $\{x(k)\}_{k\in\mathbb{N}}$ and a finite number r > 0 such that

- The balls $B_r(x(k))$, $k \in \mathbb{N}$, form a cover of X (i.e. $\{x(k)\}$ is an *r*-net for X).
- **2** Each ball $B_r(x(k))$, $k \in \mathbb{N}$, contains infinitely many points.

Theorem

If X is PIUBS (or, equivalently CIUBB) then the group of invertibles in $C_u^*(X)$ is contractible.

イロト イポト イヨト イヨト

Outline

Classical Kuiper's theorem

- 2 Kuiper's theorem and Hilbert C*-modules
 Relation to K-theory
 - Manuilov algebras on Hilbert C*-modules

Roe algebras and Kuiper property for spaces

- Uniform Roe algebras
- Spaces with Kuiper property
- Non-Kuiper spaces

< 61 b

The 14 at 14

For a metric space X, let $\sqcup^n X$ denote the space $X_1 \sqcup \ldots \sqcup X_n$, where $\alpha_i : X_i \to X$, $i = 1, \ldots, n$, are isometries, with the metric given by $d(x, y) = d_X(\alpha_i(x), \alpha_j(y)) + |i - j|$, where $x \in X_i$, $y \in X_j$. Then

 $C_u^*(\sqcup^n X) \cong M_n(C_u^*(X)).$

Definition

We call *X* stable if for any $n \in \mathbb{N}$ there exists a bijection $\beta_n : \sqcup^n X \to X$ which is a coarse equivalence of metrics. For stable *X*, β_n induces an isomorphism $M_n(C_u^*(X)) \cong C_u^*(X)$ for any $n \in \mathbb{N}$ (by the above Proposition). *X* is locally finite (or proper) if each ball contains a finite number of points. For a subset $Y \subset X$ set $\partial_R Y = \{x \in X : d(x, Y) < R; d(x, X \setminus Y) < R\}$. Recall that *X* satisfies the Fölner property if for any R > 0 and any $\varepsilon > 0$ there exists a finite subset $F \subset X$ such that $\frac{|\partial_R F|}{|F|} < \varepsilon$.

For a metric space X, let $\sqcup^n X$ denote the space $X_1 \sqcup \ldots \sqcup X_n$, where $\alpha_i : X_i \to X$, $i = 1, \ldots, n$, are isometries, with the metric given by $d(x, y) = d_X(\alpha_i(x), \alpha_j(y)) + |i - j|$, where $x \in X_i$, $y \in X_j$. Then

 $C_{u}^{*}(\sqcup^{n} X) \cong M_{n}(C_{u}^{*}(X)).$

Definition

We call *X* stable if for any $n \in \mathbb{N}$ there exists a bijection $\beta_n : \sqcup^n X \to X$ which is a coarse equivalence of metrics. For stable *X*, β_n induces an isomorphism $M_n(C^*_u(X)) \cong C^*_u(X)$ for any $n \in \mathbb{N}$ (by the above Proposition). *X* is locally finite (or proper) if each ball contains a finite number of points. For a subset $Y \subset X$ set $\partial_R Y = \{x \in X : d(x, Y) < R; d(x, X \setminus Y) < R\}$. Recall that *X* satisfies the Fölner property if for any R > 0 and any $\varepsilon > 0$ there exists a finite subset $F \subset X$ such that $\frac{|\partial_R F|}{|F|} < \varepsilon$.

E.Troitsky (Moscow State University)

TH 1.

For a metric space X, let $\sqcup^n X$ denote the space $X_1 \sqcup \ldots \sqcup X_n$, where $\alpha_i : X_i \to X$, $i = 1, \ldots, n$, are isometries, with the metric given by $d(x, y) = d_X(\alpha_i(x), \alpha_j(y)) + |i - j|$, where $x \in X_i$, $y \in X_j$. Then

 $C_{u}^{*}(\sqcup^{n} X) \cong M_{n}(C_{u}^{*}(X)).$

Definition

We call *X* stable if for any $n \in \mathbb{N}$ there exists a bijection $\beta_n : \sqcup^n X \to X$ which is a coarse equivalence of metrics. For stable *X*, β_n induces an isomorphism $M_n(C^*_u(X)) \cong C^*_u(X)$ for any $n \in \mathbb{N}$ (by the above Proposition). *X* is locally finite (or proper) if each ball contains a finite number of points. For a subset $Y \subset X$ set $\partial_R Y = \{x \in X : d(x, Y) < R; d(x, X \setminus Y) < R\}$. Recall that *X* satisfies the Fölner property if for any R > 0 and any $\varepsilon > 0$ there exists a finite subset $F \subset X$ such that $\frac{|\partial_R F|}{|F|} < \varepsilon$.

E.Troitsky (Moscow State University)

T > 4

For a metric space X, let $\sqcup^n X$ denote the space $X_1 \sqcup \ldots \sqcup X_n$, where $\alpha_i : X_i \to X$, $i = 1, \ldots, n$, are isometries, with the metric given by $d(x, y) = d_X(\alpha_i(x), \alpha_j(y)) + |i - j|$, where $x \in X_i$, $y \in X_j$. Then

 $C_{u}^{*}(\sqcup^{n} X) \cong M_{n}(C_{u}^{*}(X)).$

Definition

We call *X* stable if for any $n \in \mathbb{N}$ there exists a bijection $\beta_n : \sqcup^n X \to X$ which is a coarse equivalence of metrics. For stable *X*, β_n induces an isomorphism $M_n(C^*_u(X)) \cong C^*_u(X)$ for any $n \in \mathbb{N}$ (by the above Proposition). *X* is locally finite (or proper) if each ball contains a finite number of points. For a subset $Y \subset X$ set $\partial_R Y = \{x \in X : d(x, Y) < R; d(x, X \setminus Y) < R\}$. Recall that *X* satisfies the Fölner property if for any R > 0 and any $\varepsilon > 0$ there exists a finite subset $F \subset X$ such that $\frac{|\partial_R F|}{|F|} < \varepsilon$.

TH 1.

Non-Kuiper spaces from the Fölner trace

If *X* is locally finite then, for $T \in C_u^*(X)$ and for a finite set $F \subset X$ put $f_F(T) = \frac{1}{|F|} \sum_{x \in F} T_{xx}$. For a sequence of finite sets $F_n \subset X$ and an ultrafilter ω on \mathbb{N} , one can define the ultralimit $\lim_{\omega} f_{F_n}(T)$. Then it is known that the Fölner property allows to define in this way a trace *f* on $C_u^*(X)$ with f(1) = 1.

Theorem

Let X be a stable, locally finite metric space with the Fölner property. Then X is not a Kuiper space.

Proof.

If the group $GL(C_u^*(X))$ of invertible elements is contractible then, by stability of X, so are $GL(M_n(C_u^*(X)))$ for any $n \in \mathbb{N}$. One has $K_0(A) = \pi_1(\text{inj } \lim_{n\to\infty} GL(M_n(A)))$ for any unital Banach algebra A, hence $K_0(C_u^*(X)) = 0$. But $f(1) \neq f(0)$, hence $[1] \neq [0]$ in $K_0(C_u^*(X))$.

Non-Kuiper spaces from the Fölner trace

If *X* is locally finite then, for $T \in C_u^*(X)$ and for a finite set $F \subset X$ put $f_F(T) = \frac{1}{|F|} \sum_{x \in F} T_{xx}$. For a sequence of finite sets $F_n \subset X$ and an ultrafilter ω on \mathbb{N} , one can define the ultralimit $\lim_{\omega} f_{F_n}(T)$. Then it is known that the Fölner property allows to define in this way a trace *f* on $C_u^*(X)$ with f(1) = 1.

Theorem

Let X be a stable, locally finite metric space with the Fölner property. Then X is not a Kuiper space.

Proof.

If the group $GL(C_u^*(X))$ of invertible elements is contractible then, by stability of X, so are $GL(M_n(C_u^*(X)))$ for any $n \in \mathbb{N}$. One has $K_0(A) = \pi_1(\text{inj } \lim_{n\to\infty} GL(M_n(A)))$ for any unital Banach algebra A, hence $K_0(C_u^*(X)) = 0$. But $f(1) \neq f(0)$, hence $[1] \neq [0]$ in $K_0(C_u^*(X))$.

Non-Kuiper spaces from the Fölner trace

If X is locally finite then, for $T \in C_u^*(X)$ and for a finite set $F \subset X$ put $f_F(T) = \frac{1}{|F|} \sum_{x \in F} T_{xx}$. For a sequence of finite sets $F_n \subset X$ and an ultrafilter ω on \mathbb{N} , one can define the ultralimit $\lim_{\omega} f_{F_n}(T)$. Then it is known that the Fölner property allows to define in this way a trace f on $C_u^*(X)$ with f(1) = 1.

Theorem

Let X be a stable, locally finite metric space with the Fölner property. Then X is not a Kuiper space.

Proof.

If the group $GL(C_u^*(X))$ of invertible elements is contractible then, by stability of X, so are $GL(M_n(C_u^*(X)))$ for any $n \in \mathbb{N}$. One has $K_0(A) = \pi_1(\text{inj }\lim_{n\to\infty} GL(M_n(A)))$ for any unital Banach algebra A, hence $K_0(C_u^*(X)) = 0$. But $f(1) \neq f(0)$, hence $[1] \neq [0]$ in $K_0(C_u^*(X))$.

Thank you!

イロト イポト イヨト イヨト

э

DQC

31/31