Pseudodifferential operators in the noncommutative setting

Xiao Xiong

Harbin Institute of Technology

Harbin-Moscow 2022 28 July 2022

Classical ¥do

A Ψdo differential operator is formally defined as

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\theta\rangle} a(x,y,\theta)u(y) \, dy \, d\theta,$$

where $a(x,y, heta)\in S^m_{
ho,\delta}(\mathbb{R}^d imes\mathbb{R}^d imes\mathbb{R}^d)$, meaning that

$$|\partial^lpha_ heta\partial^eta_{\mathsf{x}} \mathsf{a}(\mathsf{x},\mathsf{y}, heta)| \leq \mathcal{C}_{lpha,eta,\mathsf{K}}(1+| heta|^2)^{rac{m-
ho|lpha|+\delta|eta|}{2}}$$

for $(x, y) \in K$ compact and $\theta \in \mathbb{R}^d$.

Classical ¥do

A Ψ do differential operator is formally defined as

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\theta\rangle} a(x,y,\theta)u(y) \, dy \, d\theta,$$

where $a(x,y, heta)\in S^m_{
ho,\delta}(\mathbb{R}^d imes\mathbb{R}^d imes\mathbb{R}^d)$, meaning that

$$|\partial^lpha_ heta\partial^eta_{\mathsf{x}} \mathsf{a}(\mathsf{x},\mathsf{y}, heta)| \leq \mathcal{C}_{lpha,eta,\mathsf{K}}(1+| heta|^2)^{rac{m-
ho|lpha|+\delta|eta|}{2}}$$

for $(x, y) \in K$ compact and $\theta \in \mathbb{R}^d$. We usually fix $(\rho, \delta) = (1, 0)$, more generally $0 \le \delta \le \rho \le 1$ but $\delta \ne 1$, singular case $(\rho, \delta) = (1, 1)$.

Classical ¥do

A Ψ do differential operator is formally defined as

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\theta\rangle} a(x,y,\theta)u(y) \, dy \, d\theta,$$

where $a(x,y, heta)\in S^m_{
ho,\delta}(\mathbb{R}^d imes\mathbb{R}^d imes\mathbb{R}^d)$, meaning that

$$|\partial^lpha_ heta\partial^eta_{\mathsf{X}} \mathsf{a}(\mathsf{x},\mathsf{y}, heta)| \leq \mathcal{C}_{lpha,eta,\mathsf{K}}(1+| heta|^2)^{rac{m-
ho|lpha|+\delta|eta|}{2}}$$

for $(x, y) \in K$ compact and $\theta \in \mathbb{R}^d$. We usually fix $(\rho, \delta) = (1, 0)$, more generally $0 \le \delta \le \rho \le 1$ but $\delta \ne 1$, singular case $(\rho, \delta) = (1, 1)$.

• Example : $A = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$, where $a_{\alpha}(x) \in C^{\infty}(\mathbb{R}^d)$. Formally

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\xi\rangle} \left(\sum_{|\alpha|\leq m} a_{\alpha}(x)\xi^{\alpha}\right) dy d\xi.$$

Symbol

Formally the symbol of a Ψ do is determined as

$$\sigma_A(x,\xi)=e^{-ix\cdot\xi}Ae^{ix\cdot\xi}.$$

Then

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} \sigma_A(x,\xi) \widehat{u}(\xi) \, d\xi = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\xi\rangle} \sigma_A(x,\xi) u(y) \, dy \, d\xi.$$

Symbol

Formally the symbol of a Ψ do is determined as

$$\sigma_A(x,\xi)=e^{-ix\cdot\xi}Ae^{ix\cdot\xi}.$$

Then

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} \sigma_A(x,\xi) \widehat{u}(\xi) \, d\xi = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\xi\rangle} \sigma_A(x,\xi) u(y) \, dy \, d\xi.$$

• Torus case : For $\sigma \in S^n_{
ho,\delta}(\mathbb{T}^d imes \mathbb{R}^d)$

$$P_{\sigma}f(x) = \sum_{m \in \mathbb{Z}^d} \sigma(x,m)\widehat{f}(m)e^{im \cdot x}.$$

Symbol

Formally the symbol of a Ψ do is determined as

$$\sigma_A(x,\xi)=e^{-ix\cdot\xi}Ae^{ix\cdot\xi}.$$

Then

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} \sigma_A(x,\xi) \widehat{u}(\xi) \, d\xi = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y,\xi\rangle} \sigma_A(x,\xi) u(y) \, dy \, d\xi.$$

• Torus case : For $\sigma \in S^n_{\rho,\delta}(\mathbb{T}^d imes \mathbb{R}^d)$

$$P_{\sigma}f(x) = \sum_{m \in \mathbb{Z}^d} \sigma(x,m)\widehat{f}(m)e^{im \cdot x}.$$

If $\sigma = \sigma(x)$ then P_{σ} is a pointwise multiplier, if $\sigma = \sigma(m)$ then P_{σ} is a Fourier multiplier.

Key theorems

Symbol calculus

Theorem

 ρ_1, ρ_2 are symbols in $S^{n_1}(\mathbb{R}^d \times \mathbb{R}^d)$ and $S^{n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ resp. Then there exists a symbol ρ_3 in $S^{n_1+n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ such that $P_{\rho_3} = P_{\rho_1}P_{\rho_2}$. Moreover, for any $N_0 \ge 0$,

$$\rho_3 - \sum_{|\alpha|_1 < N_0} \frac{i^{-|\alpha|}}{\alpha!} D_{\xi}^{\alpha} \rho_1(x,\xi) D_x^{\alpha} \rho_2(x,\xi) \in S^{n_1+n_2-N_0}(\mathbb{R}^d \times \mathbb{R}^d).$$

Key theorems

Symbol calculus

Theorem

 ρ_1, ρ_2 are symbols in $S^{n_1}(\mathbb{R}^d \times \mathbb{R}^d)$ and $S^{n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ resp. Then there exists a symbol ρ_3 in $S^{n_1+n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ such that $P_{\rho_3} = P_{\rho_1}P_{\rho_2}$. Moreover, for any $N_0 \ge 0$,

$$\rho_3 - \sum_{|\alpha|_1 < N_0} \frac{i^{-|\alpha|}}{\alpha!} D_{\xi}^{\alpha} \rho_1(x,\xi) D_x^{\alpha} \rho_2(x,\xi) \in S^{n_1+n_2-N_0}(\mathbb{R}^d \times \mathbb{R}^d).$$

Regularity on function spaces (L_p , Sobolev, Besov, local Hardy), we focus on Hilbert-Sobolev spaces $\|f\|_{H_2^s} := \|(1 - \Delta)^{s/2} f\|_2$

Theorem

For $\rho \in S^n$, P_{σ} is bounded from H_2^s to H_2^{s-n} . For $n \leq 0$, P_{σ} is bounded on H_2^s , in particular on L_2 .

• Operator valued setting : Let X be a Banach space. $u : \mathbb{R}^d \to X$, $\sigma : \mathbb{R}^d \times \mathbb{R}^d \to B(X)$, we may define

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} \sigma_A(x,\xi) \widehat{u}(\xi) d\xi.$$

• Operator valued setting : Let X be a Banach space. $u : \mathbb{R}^d \to X$, $\sigma : \mathbb{R}^d \times \mathbb{R}^d \to B(X)$, we may define

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} \sigma_A(x,\xi) \widehat{u}(\xi) d\xi.$$

• Group action setting : Let $(s, u) \to \alpha_s(u)$ be a C^* -action on the C^* -algebra \mathcal{A} . For $u \in \mathcal{A}$ and smooth $\sigma : \mathbb{R}^d \to \mathcal{A}$, Ψ do is defined as

$$P_{\sigma}u = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{is\dot{\xi}}\sigma(\xi)\alpha_{-s}(u)\,ds\,d\xi.$$

• Operator valued setting : Let X be a Banach space. $u : \mathbb{R}^d \to X$, $\sigma : \mathbb{R}^d \times \mathbb{R}^d \to B(X)$, we may define

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} \sigma_A(x,\xi) \widehat{u}(\xi) \, d\xi.$$

• Group action setting : Let $(s, u) \to \alpha_s(u)$ be a C^* -action on the C^* -algebra \mathcal{A} . For $u \in \mathcal{A}$ and smooth $\sigma : \mathbb{R}^d \to \mathcal{A}$, Ψ do is defined as

$$P_{\sigma}u = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{is\dot{\xi}} \sigma(\xi) \alpha_{-s}(u) \, ds \, d\xi.$$

• **Example :** Quantum torus A_{θ} , with a periodic group action.

Quantum tori

• Noncommutative tori : $d \ge 2$ and $\theta = (\theta_{kj})$ real skew-symmetric $d \times d$ -matrix. The quantum torus \mathcal{A}_{θ} is the universal C^* -algebra generated by d unitaries U_1, \ldots, U_d satisfying the following commutation relation

$$U_k U_j = e^{2\pi i \theta_{kj}} U_j U_k, \ j, k = 1, \ldots, d.$$

• **Trace**: Let \mathcal{P}_{θ} denote the involutive subalgebra of polynomials, dense in \mathcal{A}_{θ} . For any polynomial $x = \sum_{m \in \mathbb{Z}^d} \alpha_m U^m$ define $\tau(x) = \alpha_0$. Then τ extends to a faithful tracial state on \mathcal{A}_{θ} . Let \mathbb{T}^d_{θ} be the w*-closure of \mathcal{A}_{θ} in the GNS representation of τ . Then τ becomes a normal faithful tracial state on \mathbb{T}^d_{θ} . Thus $(\mathbb{T}^d_{\theta}, \tau)$ is a noncommutative(=quantum) probability space.

• Noncommutative L_p -spaces : For $1 \le p < \infty$ and $x \in \mathbb{T}^d_{\theta}$ let $\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$ with $|x| = (x^*x)^{\frac{1}{2}}$. This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space $(\mathbb{T}^d, \mu) \leftrightarrow$ noncom probability space $(\mathbb{T}^d_\theta, \tau)$ commutative algebra $\mathcal{L}_{\infty}(\mathbb{T}^d) \leftrightarrow$ noncommutative algebra \mathbb{T}^d_{θ} integration against $\mu \int_{\mathbb{T}^d} \leftrightarrow \operatorname{trace} \tau$ $\int_{\mathbb{T}^d} f d\mu \quad \leftrightarrow \quad \tau(x)$ $\|f\|_{p} = \left(\int_{\mathbb{T}^{d}} |f|^{p} d\mu\right)^{\frac{1}{p}} \quad \leftrightarrow \quad \|x\|_{p} = \left(\tau(|x|^{p})\right)^{\frac{1}{p}}$ $L_{p}(\mathbb{T}^{d}) \quad \leftrightarrow \quad L_{p}(\mathbb{T}^{d})$

 $S^{n}(\mathbb{R}^{d}; \mathcal{S}(\mathbb{T}^{d}_{\theta}))$ consists of maps $\rho \in C^{\infty}(\mathbb{R}^{d}; \mathcal{S}(\mathbb{T}^{d}_{\theta}))$ s.t.

$$\|D^lpha_ heta D^eta_\xi
ho(\xi)\| \leq C_{lpha,eta} (1+|\xi|^2)^{rac{n-|eta|}{2}}.$$

Theorem (Baaj, Connes, 1980s)

 ρ_1, ρ_2 are symbols in $S^{n_1}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}^d_{\theta}))$ and $S^{n_2}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}^d_{\theta}))$ resp. Then there exists a symbol ρ_3 in $S^{n_1+n_2}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}^d_{\theta}))$ such that $P_{\rho_3} = P_{\rho_1}P_{\rho_2}$. Moreover, for any $N_0 \ge 0$,

$$\rho_3 - \sum_{|\alpha|_1 < N_0} \frac{(2\pi i)^{-|\alpha|_1}}{\alpha!} D_{\xi}^{\alpha} \rho_1 D_{\theta}^{\alpha} \rho_2 \in S^{n_1 + n_2 - N_0}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}^d_{\theta})).$$

Theorem (Xia-X, Ha-Lee-Ponge)

For $\rho \in S^n$, P_{σ} is bounded from $H_2^s(\mathbb{T}^d_{\theta})$ to $H_2^{s-n}(\mathbb{T}^d_{\theta})$. For $n \leq 0$, P_{σ} is bounded on $H_2^s(\mathbb{T}^d_{\theta})$, in particular on $L_2(\mathbb{T}^d_{\theta})$.

Theorem (Xia-X, Ha-Lee-Ponge)

For $\rho \in S^n$, P_{σ} is bounded from $H_2^s(\mathbb{T}^d_{\theta})$ to $H_2^{s-n}(\mathbb{T}^d_{\theta})$. For $n \leq 0$, P_{σ} is bounded on $H_2^s(\mathbb{T}^d_{\theta})$, in particular on $L_2(\mathbb{T}^d_{\theta})$.

Easy observation :

()
$$\theta = 0$$
, for $\rho_1, \rho_2 \in S^0$, $[P_{\rho_1}, P_{\rho_2}] \in S^{-1}$, is compact, since

$$\operatorname{sym}(\mathsf{P}_{\rho_1}\circ\mathsf{P}_{\rho_2})-
ho_1
ho_2\in \mathcal{S}^{-1},\quad \operatorname{sym}(\mathsf{P}_{\rho_2}\circ\mathsf{P}_{\rho_1})-
ho_2
ho_1\in \mathcal{S}^{-1};$$

general θ, if ρ₁, ρ₂ ∈ S⁰ are commutative, [P_{ρ1}, P_{ρ2}], is compact.
special case : ρ₁ : ℝ^d → ℂ, ρ₂ ∈ S(T^d_θ), then [P_{ρ1}, P_{ρ2}] is compact.

Abstract construction/definition of 0-order Ψ do

Theorem (McDonald-Sukochev-Zanin)

Let $\pi_1 : \mathcal{A}_1 \to \mathcal{B}(H)$ and $\pi_2 : \mathcal{A}_2 \to \mathcal{B}(H)$ be representations of C^* -algebras, Π be the C^* -algebra generated by $\pi_1(\mathcal{A}_1)$ and $\pi_2(\mathcal{A}_2)$. If

- $\textcircled{ } \mathfrak{A}_1, \mathcal{A}_2 \text{ are unital and } \mathcal{A}_2 \text{ is abelian ; }$
- 2 $[\pi_1(a_1), \pi_2(a_2)]$ is compact;

then \exists sym : $\Pi \to \mathcal{A}_1 \otimes_{min} \mathcal{A}_2$ such that

 $\operatorname{sym}(\pi_1(a_1)) = a_1 \otimes 1, \quad \operatorname{sym}(\pi_2(a_2)) = 1 \otimes a_2.$

Abstract Ψdo

Example :

Abstract Ψdo

Example :

F

$$\pi = (q \circ \pi_1) \otimes (q \circ \pi_2).$$

The map sym is defined as

$$\operatorname{sym} = \pi^{-1} \circ q : \Pi \to \mathcal{B}(H) / \mathcal{K}(H) \to \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2.$$

Abstract Ψdo

Example :

×

•
$$\mathcal{A}_1 = C(\mathbb{T}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g(\frac{\nabla}{(-\Delta)^{1/2}});$$

• $\mathcal{A}_1 = \mathbb{C} + C_0(\mathbb{T}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g(\frac{\nabla}{(-\Delta)^{1/2}});$
• $\mathcal{A}_1 = C(\mathbb{T}^d_{\theta}), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g(\frac{\nabla}{(-\Delta)^{1/2}}).$
Proof : Denote $q : \mathcal{B}(H) \to \mathcal{B}(H)/\mathcal{K}(H)$. Then we have a natural action isomorphism $\pi : \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2 \to \mathcal{B}(H)$ determined by

$$\pi = (q \circ \pi_1) \otimes (q \circ \pi_2).$$

The map sym is defined as

$$\operatorname{sym} = \pi^{-1} \circ q : \Pi \to \mathcal{B}(H) / \mathcal{K}(H) \to \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2.$$

Remark : Positive order Ψdos are not considered ; Negative order Ψdos are killed by the quotient map.

Abstract Ψ do of negative order

Ideals of compact op. $\mu_k \in \ell_p \leftrightarrow T \in S_p$, and $\mu_k = O(k^{-\frac{1}{p}}) \leftrightarrow T \in S_{p,\infty}$. Observation : If $\sigma \in S^{-\alpha}$ then $P_{\sigma} \in S_{d/\alpha,\infty}$, in particular

$$J^lpha = (1-\Delta)^{-rac{lpha}{2}}, I^lpha = (-\Delta)^{-rac{lpha}{2}} \in \mathcal{S}_{d/lpha,\infty}.$$

Theorem (McDonald-Sukochev-X. 2020CMP)

Let $\alpha, \beta \in \mathbb{R}$. For smooth x, if $\alpha < \beta + 1$, then $[J^{\alpha}, x]J^{-\beta} \in \mathcal{L}_{\frac{d}{\beta - \alpha + 1}, \infty}$. If

 $\alpha = \beta + 1$, then the operator $[J^{\alpha}, x]J^{-\beta}$ has bounded extension.

Abstract Ψ do of negative order

Ideals of compact op. $\mu_k \in \ell_p \leftrightarrow T \in S_p$, and $\mu_k = O(k^{-\frac{1}{p}}) \leftrightarrow T \in S_{p,\infty}$. Observation : If $\sigma \in S^{-\alpha}$ then $P_{\sigma} \in S_{d/\alpha,\infty}$, in particular

$$J^lpha = (1-\Delta)^{-rac{lpha}{2}}, I^lpha = (-\Delta)^{-rac{lpha}{2}} \in \mathcal{S}_{d/lpha,\infty}.$$

Theorem (McDonald-Sukochev-X. 2020CMP)

Let $\alpha, \beta \in \mathbb{R}$. For smooth x, if $\alpha < \beta + 1$, then $[J^{\alpha}, x]J^{-\beta} \in \mathcal{L}_{\frac{d}{\beta - \alpha + 1}, \infty}$. If

 $\alpha = \beta + 1$, then the operator $[J^{\alpha}, x]J^{-\beta}$ has bounded extension.

Theorem (Sukochev-X.-Zanin In progress)

Let $\alpha, \beta \in \mathbb{R}$, and m be a homogeneous symbol of order 0. For smooth x, if $\alpha < \beta + 1$, then $[T_m J^{\alpha}, x] J^{-\beta} \in \mathcal{L}_{\frac{d}{\beta - \alpha + 1}, \infty}$. If $\alpha = \beta + 1$, then the operator $[T_m J^{\alpha}, x] J^{-\beta}$ has bounded extension.

 $T \in S_{p,\infty}$ means $\sup_t t^{1/p} \mu(t, T) < \infty$. Now we are interested in $\lim_{t\to\infty} t^{1/p} \mu(t, T)$. On \mathbb{T}^d_{θ} , one can calculate

$$\lim_{t\to\infty}t^{1/d}\mu(t,J^{-1})=d^{-\frac{1}{d}}.$$

• Question For 0-order Ψ do T, what is $\lim_{t\to\infty} t^{1/d} \mu(t, TJ^{-1})$?

Asymptotic limits of Ψ do

Another proof of $\lim_{t\to\infty} t^{1/d} \mu(t, J^{-1}) = d^{-\frac{1}{d}}$ is done using noncommutative Taubrian Theorem (Wiener-Ikehara Theorem) :

Theorem (McDonald-Sukochev-Zanin)

Let p > 2 and let $0 \le A, B \in S_{\infty}$ satisfy $B \in S_{p,\infty}$ and $[B, A^{\frac{1}{2}}] \in S_{\frac{p}{2},\infty}$. If there exists $0 \le c \in \mathbb{R}$ such that the function

$$F_{A,B}(z) := \operatorname{Tr}(A^z B^z) - rac{c}{z-p}, \quad z \in \mathbb{C}, \quad \Re(z) > p,$$

admits a continuous extension to the closed half plane $\{z \in \mathbb{C} : \Re(z) \ge p\}$, then there exists the limit

$$\lim_{t\to\infty}t^{\frac{1}{p}}\mu(t,AB)=\big(\frac{c}{p}\big)^{\frac{1}{p}}.$$

Asymptotic limits of Ψ do

The calculation $\lim_{t\to\infty} t^{1/d} \mu(t, J^{-1})$ is reduced to the meromorphic continuation of $\operatorname{Tr}(J^z)$ on $\{z \in \mathbb{C} : \Re(z) > d\}$ to $\{z \in \mathbb{C} : \Re(z) \ge d\}$. Here

$$\mathrm{Tr}(J^z) = \sum_{m\in\mathbb{Z}^d} (1+|m|^2)^{rac{z}{2}}$$

has a simple pole at z = d. (see Shubin's book for more general op.)

Asymptotic limits of Ψ do

The calculation $\lim_{t\to\infty} t^{1/d} \mu(t, J^{-1})$ is reduced to the meromorphic continuation of $\operatorname{Tr}(J^z)$ on $\{z \in \mathbb{C} : \Re(z) > d\}$ to $\{z \in \mathbb{C} : \Re(z) \ge d\}$. Here

$$\mathrm{Tr}(J^z) = \sum_{m\in\mathbb{Z}^d} (1+|m|^2)^{rac{z}{2}}$$

has a simple pole at z = d. (see Shubin's book for more general op.)

Similarly we can establish the following

Theorem (Sukochev-X.-Zanin)

Let $d \geq 2$. If $T \in \Pi(C(\mathbb{T}^d_{\theta}), C(\mathbb{S}^{d-1}))$, then

$$\lim_{\to\infty} t^{\frac{1}{d}} \mu(t, \mathcal{T}(-\Delta)^{-\frac{1}{2}}) = d^{-\frac{1}{d}} \| \operatorname{sym}(\mathcal{T}) \|_{L_d(L_\infty(\mathbb{T}^d_\theta) \bar{\otimes} L_\infty(\mathbb{S}^{d-1}))}.$$

Similar results for classical Ψ do are obtained by Birman, Solomyak and their coauthors.

- Def : Let $\mathcal A$ be an involutive algebra over $\mathbb C.$ Then a Fredholm module over $\mathcal A$ is given by
 - **(**) an involutive representation π of \mathcal{A} on a Hilbert space \mathcal{H} ,
 - an operator $F = F^*$, $F^2 = 1$, on \mathcal{H} such that $[F, \pi(a)]$ is a compact operator for any *a* ∈ \mathcal{A} .

- Def : Let $\mathcal A$ be an involutive algebra over $\mathbb C.$ Then a Fredholm module over $\mathcal A$ is given by
 - **(**) an involutive representation π of \mathcal{A} on a Hilbert space \mathcal{H} ,
 - an operator $F = F^*$, $F^2 = 1$, on \mathcal{H} such that $[F, \pi(a)]$ is a compact operator for any *a* ∈ \mathcal{A} . (Atiyah's definition of abstract elliptic)

- Def : Let $\mathcal A$ be an involutive algebra over $\mathbb C.$ Then a Fredholm module over $\mathcal A$ is given by
 - **(**) an involutive representation π of \mathcal{A} on a Hilbert space \mathcal{H} ,
 - an operator $F = F^*$, $F^2 = 1$, on \mathcal{H} such that $[F, \pi(a)]$ is a compact operator for any *a* ∈ \mathcal{A} . (Atiyah's definition of abstract elliptic)
- Quantized calculus of differential forms :
 - **()** the differential df of $f \in \mathcal{A}$:

$$df = i[F, f] = i(Ff - fF);$$

2 the integration $T \mapsto \operatorname{Tr}_{\omega}(T)$.

Question in Connes' framework

Let F be the quantum Riesz transform :

$$F = \operatorname{sgn}(\mathcal{D}) = \sum_{j} \gamma_{j} \otimes \frac{D_{j}}{\sqrt{D_{1}^{2} + \cdots + D_{d}^{2}}}$$

how to calculate the limit $\lim_{t\to\infty} t^{\frac{1}{d}}\mu(t, dx)$? The calculation $\lim_{t\to\infty} t^{1/d}\mu(t, dx)$ is reduced to find $T \in \Pi(C(\mathbb{T}^d_{\theta}), C(\mathbb{S}^{d-1}))$ such that

$$\lim_{t\to\infty}t^{1/d}\mu(t,dx)=\lim_{t\to\infty}t^{1/d}\mu(t,TJ^{-1})$$

Theorem (Sukochev-X.-Zanin)

Let $d \geq 2$. If $x \in \dot{W}^1_d(\mathbb{T}^d_\theta)$, then

$$\lim_{t\to\infty}t^{\frac{1}{d}}\mu(t,\vec{d}x)=d^{-\frac{1}{d}}\left\|\sum_{j=1}^d\gamma_j\otimes D_jx\otimes 1-\sum_{j,k=1}^d\gamma_j\otimes D_kx\otimes s_ks_j\right\|_d.$$

Thank you !