How to quantum shuffle cards – mixing time and cutoff profiles

Simeng Wang

Harbin Institute of Technology

joint work with Amaury Freslon (Orsay) & Lucas Teyssier (Vienna)

1st Harbin-Moscow Conference on Analysis, July 2022

Poincaré (1912): when we are playing cards, after a sufficiently long time, all the permutations of cards appear with equal probabilities.

CHAPITRE XVI.

OUESTIONS DIVERSES.

225. Battage des cartes. — Je me suis occupé dans l'introduction des problèmes relatifs au joueur qui bat un jeu de cartes. Pourquoi, quand le jeu a été battu assez longtemps, admettons-nous que toutes les permutations des cartes, c'està-dire tous les ordres dans lesquels ces cartes peuvent être rangées, doivent être également probables? C'est ce que nous allons examiner de plus près.

 \rightsquigarrow "random walk theory"

A "LAZY" CARD SHUFFLE BY RANDOM TRANSPOSITIONS

- Spread the cards on a table;
- Select one card uniformly at random, then put it back;
- Select a second card in the same way;
- Swap the two cards if different;
- Otherwise, do nothing.

Interpretation:

- $\mu_{\text{tran}} =$ uniform measure on transpositions in the permutation group S_N
- $\mu_N = \frac{N-1}{N} \mu_{\text{tran}} + \frac{1}{N} \delta_{\text{id}}$
- Random walk on S_N driven by μ_N : the distribution at the *k*-th step is

$$
\mu_N^{*k}(\sigma) \coloneqq \sum_{\substack{\sigma_1,\ldots,\sigma_k \in S_N \\ \sigma_1\cdots\sigma_k = \sigma}} \mu_N(\sigma_1)\cdots\mu_N(\sigma_k), \quad \sigma \in S_N.
$$

A "LAZY" CARD SHUFFLE BY RANDOM TRANSPOSITIONS

Question Does this acutally mix the cards ? **Answer** Yes. μ_N^{*k} converges weakly to the Haar measure on S_N .

A "LAZY" CARD SHUFFLE BY RANDOM TRANSPOSITIONS

Question Does this acutally mix the cards ?

Answer Yes. μ_N^{*k} converges weakly to the Haar measure on S_N .

Question How and when?

Answer Diaconis-Shahshahani 81':

- Before *N* ln(*N*)/2 steps, the distribution stays far from uniform;
- After $N \ln(N)/2$ steps, the distribution suddenly drops to uniform.

CUTOFF PHENOMENON FOR RANDOM TRANSPOSITIONS

Denote $\mu_{\text{Haar}} =$ Haar measure on S_N . The total variation distance

$$
d(\mu_N^{*k}, \mu_{\text{Haar}}) \coloneqq \sup_{A \subset S_N} |\mu_N^{*k}(A) - \mu_{\text{Haar}}(A)| = \frac{1}{2} ||\mu_N^{*k} - \mu_{\text{Haar}}||_1
$$

Theorem (Diaconis-Shahshahani 81')

For $\epsilon > 0$ *, as* $N \to \infty$

CUTOFF PHENOMENON FOR RANDOM TRANSPOSITIONS

Denote $\mu_{\text{Haar}} =$ Haar measure on S_N . The total variation distance

$$
d(\mu_N^{*k}, \mu_{\text{Haar}}) \coloneqq \sup_{A \subset S_N} |\mu_N^{*k}(A) - \mu_{\text{Haar}}(A)| = \frac{1}{2} ||\mu_N^{*k} - \mu_{\text{Haar}}||_1
$$

Theorem (Diaconis-Shahshahani 81')

For $\epsilon > 0$ *, as* $N \to \infty$

How does the "cutoff" occur in the short window?

How does the "cutoff" occur in the short window?

Theorem (Teyssier, Ann. Proba. 20') *For* $c \in \mathbb{R}$ *and* $N \to \infty$ *,* $d(\mu_N^{*\frac{1}{2}(N\ln(N)+cN)})$ $\frac{\partial f}{\partial N}(\text{N}\ln(N)+\text{CN})$, μ_{Haar}) $\rightarrow d(\text{Poiss}(1+e^{-c}), \text{Poiss}(1)),$

where $Poiss(\lambda) = Poisson law of parameter \lambda$.

"cutoff profile"

- • C^{*}-algebra = norm closed *-subalgebra of $B(H)$ for some Hilbert H = collections of "observables" in physics
- (locally compact) topological space $\Omega \leftrightarrow$ commutative C*-algebra $C_0(\Omega) \subset B(\ell_2(\Omega))$ "quantum topological space" \leftrightarrow noncommutative C*-algebra
- symmetries on topological spaces \leftrightarrow topological groups "quantum symmetries on classical/quantum topological spaces" \leftrightarrow topological quantum groups

- • C^{*}-algebra = norm closed *-subalgebra of $B(H)$ for some Hilbert H = collections of "observables" in physics
- (locally compact) topological space $\Omega \leftrightarrow$ commutative C*-algebra $C_0(\Omega) \subset B(\ell_2(\Omega))$ "quantum topological space" \leftrightarrow noncommutative C*-algebra
- symmetries on topological spaces \leftrightarrow topological groups "quantum symmetries on classical/quantum topological spaces" \leftrightarrow topological quantum groups

"... it is important to solve the following problems: Find a nontrivial finite quantum group of symmetries of the finite space F."

– Alain Connes

• A (classical) permutation matrix $C = [c_{ii}]_{1 \le i,j \le N} \in S_N$ is such that

$$
c_{ij} \in \{0, 1\}, \quad CC^t = C^tC = I.
$$

The algebra $C(S_N)$ of functions on S_N is generated by the functions $C \mapsto c_{ii}$.

• Quantum permutations (Shuzhou Wang): Consider the universal C*-algebra *A* generated by operators $(u_{ii})_{1\le i,j\le N}$ s.t. for the matrix $U = [u_{ii}]_{1\le i,j\le N}$,

$$
u_{ij} = u_{ij}^* = u_{ij}^2
$$
, $UU^t = U^t U = I$.

Intuitive notation: quantum permutation group $S_N^+ = (A,U)$ and $A = "C(S_N^+)$ $_{N}^{+})''$.

• A (classical) permutation matrix $C = [c_{ij}]_{1 \le i,j \le N} \in S_N$ is such that

 $c_{ij} \in \{0, 1\}, \quad CC^t = C^tC = I.$

The algebra $C(S_N)$ of functions on S_N is generated by the functions $C \mapsto c_{ij}$.

• Quantum permutations (Shuzhou Wang): Consider the universal C*-algebra *A* generated by operators $(u_{ij})_{1 \le i,j \le N}$ s.t. for the matrix $U = [u_{ij}]_{1 \le i,j \le N}$,

$$
u_{ij} = u_{ij}^* = u_{ij}^2
$$
, $UU^t = U^t U = I$.

Intuitive notation: quantum permutation group $S_N^+ = (A,U)$ and $A = "C(S_N^+)$ $_{N}^{+})''$.

• Interpretation in language of quantum physics: u_{ii} 's = observables measurement on a quantum state $\xi \rightarrow \text{random permutation}$

$$
\mathbb{P}(i \to j) = \langle \xi | u_{ij} | \xi \rangle
$$

Atserias,Lupini,Mancinska,Roberson,..., 19'-20': quantum permutations much better than the classicals one when contructing strategies in non-lo[cal](#page-11-0) [g](#page-13-0)[a](#page-10-0)[m](#page-11-0)[es](#page-13-0) [o](#page-0-0)[n](#page-25-0) [gr](#page-0-0)[ap](#page-25-0)[hs](#page-0-0).

• Analogue of group multiplications: ∗-homomorphism

$$
\Delta: C(S_N^+) \to C(S_N^+) \otimes C(S_N^+), \quad u_{ij} \mapsto \sum_{k=1}^N u_{ik} \otimes u_{kj}.
$$

• Analogue of convolutions: for two states $\varphi_1, \varphi_2 \in C(S_N^+)$ *N*) ∗ ,

$$
\varphi_1 * \varphi_2 \coloneqq (\varphi_1 \otimes \varphi_2) \circ \Delta.
$$

- Analogue of Haar measure: ∃ unique state *h* ∈ *C*(*S* + $(N^+)_N$ ^{*} s.t. for all state $\varphi \in C(S_N^+)$ *N*) ∗ , $\varphi * h = h * \varphi = h$, called the Haar state.
- Analogue of total variation distance: the distance in $C(S_N^+)$ $_N^+)^*$, for two states φ_1, φ_2 ,

$$
d(\varphi_1, \varphi_2) \coloneqq \frac{1}{2} ||\varphi_1 - \varphi_2||_{C(S_N^+)^*} \big(= \sup_{p = p^* = p^2 \in C(S_N^+)^{**}} |\varphi_1(p) - \varphi_2(p)| \big).
$$

QUANTUM RANDOM TRANSPOSITIONS

Recall: classical random transpositions given by $\mu_N = \frac{N-1}{N} \mu_{\text{tran}} + \frac{1}{N} \delta_{\text{id}}$

• μ_{tran} is unif distribution on $C := \{transpositions\}$. Note that *C* is a conjugacy class, so for $\mathbb{E} = |S_N|^{-1} \int a d(\sigma) d\sigma$,

$$
\int_{S_N} f d\mu_{\text{tran}} = \int_{S_N} (\mathbb{E}f) d\mu_{\text{tran}} \quad (=(\mathbb{E}f)((12))).
$$

• there is a similar conditional expectation $\mathbb E$ from $C(S_N^+)$ $_N^+$) onto adjoint-invariant elements. We consider analogously

$$
\varphi_{\text{tran}}(f) = (\pi \circ \mathbb{E}f)((12)), \quad f \in C(S_N^+),
$$

where π : $C(S_N^+)$ N_{N}^{+}) \rightarrow *C*(*S*_{*N*}) denotes the abelianization. (Intuitively unif distribution on the quantum conjugacy class of transpositions)

- counit ε : $C(S_N^+)$ $N^+_{N}) \rightarrow \mathbb{C}$, unique state s.t. $\varepsilon \ast \varphi = \varphi, \, \forall \varphi \in C(S_N^+)$ *N*) ∗ .
- Problem: cutoff for $\varphi_N := \frac{N-1}{N} \varphi_{\text{tran}} + \frac{1}{N} \varepsilon$?

CUTOFF FOR QUANTUM RANDOM TRANSPOSITIONS

$$
\varphi_N : C(S_N^+) \to \mathbb{C}, \quad \varphi_N = \frac{N-1}{N} \varphi_{\text{tran}} + \frac{1}{N} \varepsilon
$$

Theorem (Freslon-Teyssier-W, PTRF 22')

For $\epsilon > 0$, as $N \to \infty$.

$$
d(\varphi_{N}^{*{\lfloor(1-\epsilon)\frac{N\ln(N)}{2}\rfloor}},h)\rightarrow 1,\quad d(\varphi_{N}^{*{\lfloor(1+\epsilon)\frac{N\ln(N)}{2}\rfloor}},h)\rightarrow 0.
$$

Moreover we have the cutoff profile: for $c \in \mathbb{R}$ *, as* $N \to \infty$ *,*

$$
d(\varphi_N^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor}, h)
$$

\n
$$
\rightarrow d\left(D_{\sqrt{1+e^{-c}}}\left(\text{Meix}^+\left(\frac{1-e^{-c}}{\sqrt{1+e^{-c}}}, \frac{-e^{-c}}{1+e^{-c}}\right)\right) * \delta_{e^{-c}}, \text{Meix}^+(1,0)\right)
$$

where: $-D_r(\mu)$ *the r-dilation of* μ *(i.e. rX* $\sim D_r(\mu)$ *if* $X \sim \mu$) *-* Meix⁺ *denotes the free Meixner law.*

Free Meixner laws are introduced by Bozejko, Bryc, Saitoh, Yoshida, as analogues of classical Meixner laws. For $a \in \mathbb{R}, b > 1$,

$$
d \operatorname{Meix}^{+}(a, b)(t) = \frac{\sqrt{4(1+b)-(t-a)^{2}}}{2\pi(bt^{2}+at+1)}dt + \text{atoms}.
$$

• $b = 0$: free Poisson law (i.e. Marchenko-Pastur law) for $\lambda > 1$

$$
d\operatorname{Poiss}^{+}(\lambda, \alpha)(t) = \frac{1}{2\pi\alpha t} \sqrt{4\lambda\alpha^{2} - (t - \alpha(1+\lambda))^{2}} dt
$$

• $a = b = 0$: free semicircular law $(2\pi)^{-1} \sqrt{ }$ $4 - t^2 dt$.

 $\text{STRATEGY OF THE PROOF I: } \varphi_{\text{tran}}^{*k}$, $\text{CASE } c > 0$

$$
\varphi_N : C(S_N^+) \to \mathbb{C}, \quad \varphi_N = \frac{N-1}{N} \varphi_{\text{tran}} + \frac{1}{N} \varepsilon
$$

- Recall that we aim to understand $d(\varphi_N^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor})$ $N^{(12)^{(11)(11)(111)}}, h).$
- Consider first $d(\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N\ln(N)+cN)\rfloor}, h)$

• If $c > 0$, then $\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N \ln(N) + cN) \rfloor} \in L^1(S_N^+)$ *N*) "absolutely continuous".

$$
d(\varphi_{\text{tran}}^{*|\frac{1}{2}(N\ln(N)+cN)]}, h) = \frac{1}{2} ||\varphi_{\text{tran}}^{*|\frac{1}{2}(N\ln(N)+cN)]} - h||_{L^{1}(S_{N}^{+})}
$$

$$
\leq \frac{1}{2} ||\varphi_{\text{tran}}^{*|\frac{1}{2}(N\ln(N)+cN)]} - h||_{L^{2}(S_{N}^{+})}
$$

computable via Fourier analysis and Chebychev polynomials.

 $\text{STRATEGY OF THE PROOF II: } \varphi_{\text{tran}}^{*k}$, $\text{CASE } c < 0$

• If $c < 0$, then $\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N \ln(N) + cN) \rfloor} \notin L^1(S_N^+)$ *N*) non absolutely continuous

Simeng Wang (Harbin Institute of Technology) [Quantum cutoff](#page-0-0)

 $\text{STRATEGY OF THE PROOF II: } \varphi_{\text{tran}}^{*k}$, $\text{CASE } c < 0$

- If $c < 0$, then $\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N \ln(N) + cN) \rfloor} \notin L^1(S_N^+)$ *N*) non absolutely continuous
- It suffices to consider $C(S_N^+)$ N^+_{N}) $_{\rm central}$ =C*-subalg generated by $\sum_i u_{ii}.$

$$
d(\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor}, h) = \|(\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor} - h)\|_{C(S_N^+)_{\text{central}}} \|_{C(S_N^+)_{\text{central}}^*}
$$

 \bullet $C(S_N^+$ N_{N}^{+})_{central} ≃ *C*([0, *N*]) \longrightarrow a classical measure

$$
\int_0^N f dm_k^{(N)} = \varphi_{\text{tran}}^{*k}(f).
$$

 $\text{STRATEGY OF THE PROOF II: } \varphi_{\text{tran}}^{*k}$, $\text{CASE } c < 0$

- If $c < 0$, then $\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N \ln(N) + cN) \rfloor} \notin L^1(S_N^+)$ *N*) non absolutely continuous
- It suffices to consider $C(S_N^+)$ N^+_{N}) $_{\rm central}$ =C*-subalg generated by $\sum_i u_{ii}.$

$$
d(\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor}, h) = \|(\varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor} - h)\|_{C(S_N^+)_{\text{central}}} \|_{C(S_N^+)_{\text{central}}^*}
$$

 \bullet $C(S_N^+$ N_{N}^{+})_{central} ≃ *C*([0, *N*]) \longrightarrow a classical measure

$$
\int_0^N f dm_k^{(N)} = \varphi_{\text{tran}}^{*k}(f).
$$

Proposition (Freslon-Teyssier-W)

$$
m_k^{(N)} = \alpha_N(k)\delta_{\tilde{N}(k)} + \tilde{m}_k^{(N)},
$$

 ω here $\alpha_N(k) \in \mathbb{R}$ and $\tilde{N}(k) \notin [0,4]$, and $\tilde{m}_k^{(N)}$ $k^{(N)} \in L^2([0, 4], \text{Poiss}^+(1, 1)).$

• The previous methods lead to the cutoff for $\varphi_{\text{tran}}^{*k}$. (Contrary to the classical setting; purely quantum!)

- • The previous methods lead to the cutoff for $\varphi_{\text{tran}}^{*k}$. (Contrary to the classical setting; purely quantum!)
- How to pass to φ_N^{*k} ? $\varphi_N^{*k} \notin L^1(S_N^+)$ $_N^+$) never absolutely continuous!

$$
\varphi_N = \frac{N-1}{N} \varphi_{\text{tran}} + \frac{1}{N} \varepsilon
$$

The previous Fourier analytic tools break down.

- • The previous methods lead to the cutoff for $\varphi_{\text{tran}}^{*k}$. (Contrary to the classical setting; purely quantum!)
- How to pass to φ_N^{*k} ? $\varphi_N^{*k} \notin L^1(S_N^+)$ $_N^+$) never absolutely continuous!

$$
\varphi_N = \frac{N-1}{N}\varphi_{\text{tran}} + \frac{1}{N}\varepsilon
$$

The previous Fourier analytic tools break down.

- Idea: φ_N^{*k} = randomized $\varphi_{\text{tran}}^{*k}$
	- Flip a biased coin with probability 1/*N* for heads ;
	- **-** Tail \rightsquigarrow pick φ _{tran}; head \rightsquigarrow do nothing. $X_k \sim \text{Binom}(k, \frac{N-1}{N})$
	- $-\varphi_N^{*k} = \mathbb{E}(\varphi_{\text{tran}}^{*X_k})$

- • The previous methods lead to the cutoff for $\varphi_{\text{tran}}^{*k}$. (Contrary to the classical setting; purely quantum!)
- How to pass to φ_N^{*k} ? $\varphi_N^{*k} \notin L^1(S_N^+)$ $_N^+$) never absolutely continuous!

$$
\varphi_N = \frac{N-1}{N} \varphi_{\text{tran}} + \frac{1}{N} \varepsilon
$$

The previous Fourier analytic tools break down.

- Idea: φ_N^{*k} = randomized $\varphi_{\text{tran}}^{*k}$
	- Flip a biased coin with probability 1/*N* for heads ;
	- **-** Tail \rightsquigarrow pick φ _{tran}; head \rightsquigarrow do nothing. $X_k \sim \text{Binom}(k, \frac{N-1}{N})$

$$
-\varphi_N^{*k} = \mathbb{E}(\varphi_{\text{tran}}^{*X_k})
$$

Proposition (Freslon-Teyssier-W)

For $c \in \mathbb{R}$ *,* $\|\varphi_N^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor} - \varphi_{\text{tran}}^{*\lfloor \frac{1}{2}(N\ln(N)+cN) \rfloor} \|_{C(S_N^+)^*} \to 0, \text{ as } N \to \infty.$ 1st Ha[rbin](#page-23-0)-[Mo](#page-25-0)[sc](#page-20-0)[o](#page-21-0)[w](#page-24-0) [Co](#page-25-0)[nfe](#page-0-0)[renc](#page-25-0)[e on](#page-0-0) [An](#page-25-0)[alys](#page-0-0)[is, Ju](#page-25-0)ly 2022

Thank you very much!