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HOW TO (CLASSICALLY) SHUFFLE CARDS

Poincaré (1912): when we are playing cards, after a sufficiently long time, all the
permutations of cards appear with equal probabilities.

⇝ “random walk theory”

Simeng Wang (Harbin Institute of Technology) Quantum cutoff
1st Harbin-Moscow Conference on Analysis, July 2022

2 / 16



A “LAZY” CARD SHUFFLE BY RANDOM TRANSPOSITIONS

• Spread the cards on a table;
• Select one card uniformly at random, then put it back;
• Select a second card in the same way;
• Swap the two cards if different;
• Otherwise, do nothing.

Interpretation:
• µtran =uniform measure on transpositions in the permutation group SN

• µN = N−1
N µtran + 1

Nδid

• Random walk on SN driven by µN: the distribution at the k-th step is

µ∗k
N (σ) :=

∑
σ1,...,σk∈SN
σ1···σk=σ

µN(σ1) · · ·µN(σk), σ ∈ SN.
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A “LAZY” CARD SHUFFLE BY RANDOM TRANSPOSITIONS

Question Does this acutally mix the cards ?
Answer Yes. µ∗k

N converges weakly to the Haar measure on SN.

Question How and when?
Answer Diaconis-Shahshahani 81’:
• Before N ln(N)/2 steps, the distribution stays far from uniform;
• After N ln(N)/2 steps, the distribution suddenly drops to uniform.

“cutoff phenomenon”
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CUTOFF PHENOMENON FOR RANDOM TRANSPOSITIONS

Denote µHaar = Haar measure on SN. The total variation distance

d(µ∗k
N , µHaar) := sup

A⊂SN

|µ∗k
N (A)− µHaar(A)| = 1

2
∥µ∗k

N − µHaar∥1

Theorem (Diaconis-Shahshahani 81’)
For ϵ > 0, as N → ∞

d(µ∗⌊(1−ϵ)N ln(N)/2⌋
N , µHaar) → 1, d(µ∗⌊(1+ϵ)N ln(N)/2⌋

N , µHaar) → 0.
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CUTOFF PROFILES

How does the “cutoff” occur in the short window?

Theorem (Teyssier, Ann. Proba. 20’)
For c ∈ R and N → ∞,

d(µ
∗ 1

2 (N ln(N)+cN)

N , µHaar) → d(Poiss(1 + e−c),Poiss(1)),

where Poiss(λ) = Poisson law of parameter λ.

“cutoff profile”
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PLAYING CARDS IN THE QUANTUM WORLD

• C*-algebra = norm closed ∗-subalgebra of B(H) for some Hilbert H
= collections of “observables” in physics

• (locally compact) topological space Ω ↔ commutative C*-algebra C0(Ω) ⊂ B(ℓ2(Ω))

“quantum topological space” ↔ noncommutative C*-algebra
• symmetries on topological spaces ↔ topological groups

“quantum symmetries on classical/quantum topological spaces”
↔ topological quantum groups

“... it is important to solve the
following problems:
Find a nontrivial finite quantum
group of symmetries of the finite
space F.”

– Alain Connes
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PLAYING CARDS IN THE QUANTUM WORLD

• A (classical) permutation matrix C = [cij]1≤i,j≤N ∈ SN is such that

cij ∈ {0, 1}, CCt = CtC = I.

The algebra C(SN) of functions on SN is generated by the functions C 7→ cij.
• Quantum permutations (Shuzhou Wang): Consider the universal C*-algebra A

generated by operators (uij)1≤i,j≤N s.t. for the matrix U = [uij]1≤i,j≤N,

uij = u∗
ij = u2

ij, UUt = UtU = I.

Intuitive notation: quantum permutation group S+
N = (A,U) and A =“C(S+

N)”.
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• Quantum permutations (Shuzhou Wang): Consider the universal C*-algebra A

generated by operators (uij)1≤i,j≤N s.t. for the matrix U = [uij]1≤i,j≤N,

uij = u∗
ij = u2

ij, UUt = UtU = I.

Intuitive notation: quantum permutation group S+
N = (A,U) and A =“C(S+

N)”.
• Interpretation in language of quantum physics: uij’s = observables

measurement on a quantum state ξ → random permutation

P(i → j) = ⟨ξ|uij|ξ⟩

Atserias,Lupini,Mancinska,Roberson,..., 19’-20’: quantum permutations much better
than the classicals one when contructing strategies in non-local games on graphs.
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CONVOLUTION AND RANDOM WALKS ON QUANTUM GROUPS

• Analogue of group multiplications: ∗-homomorphism

∆ : C(S+
N) → C(S+

N)⊗ C(S+
N), uij 7→

N∑
k=1

uik ⊗ ukj.

• Analogue of convolutions: for two states φ1, φ2 ∈ C(S+
N)

∗,

φ1 ∗ φ2 := (φ1 ⊗ φ2) ◦∆.

• Analogue of Haar measure: ∃ unique state h ∈ C(S+
N)

∗ s.t. for all state φ ∈ C(S+
N)

∗,
φ ∗ h = h ∗ φ = h, called the Haar state.

• Analogue of total variation distance: the distance in C(S+
N)

∗, for two states φ1, φ2,

d(φ1, φ2) :=
1
2
∥φ1 − φ2∥C(S+

N )∗
(
= sup

p=p∗=p2∈C(S+
N )∗∗

|φ1(p)− φ2(p)|
)
.
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QUANTUM RANDOM TRANSPOSITIONS

Recall: classical random transpositions given by µN = N−1
N µtran + 1

Nδid

• µtran is unif distribution on C := {transpositions}. Note that C is a conjugacy class, so
for E = |SN|−1 ´ ad(σ)dσ,

ˆ
SN

fdµtran =

ˆ
SN

(Ef )dµtran ( = (Ef )((12))).

• there is a similar conditional expectation E from C(S+
N) onto adjoint-invariant

elements. We consider analogously

φtran(f ) = (π ◦ Ef )((12)), f ∈ C(S+
N),

where π : C(S+
N) → C(SN) denotes the abelianization. (Intuitively unif distribution on

the quantum conjugacy class of transpositions)
• counit ε : C(S+

N) → C, unique state s.t. ε ∗ φ = φ, ∀φ ∈ C(S+
N)

∗.
• Problem: cutoff for φN := N−1

N φtran + 1
Nε?
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CUTOFF FOR QUANTUM RANDOM TRANSPOSITIONS

φN : C(S+
N) → C, φN =

N − 1
N

φtran +
1
N
ε

Theorem (Freslon-Teyssier-W, PTRF 22’)
For ϵ > 0, as N → ∞,

d(φ
∗⌊(1−ϵ)

N ln(N)
2 ⌋

N , h) → 1, d(φ
∗⌊(1+ϵ)

N ln(N)
2 ⌋

N , h) → 0.

Moreover we have the cutoff profile: for c ∈ R, as N → ∞,

d(φ
∗⌊ 1

2 (N ln(N)+cN)⌋
N , h)

→ d
(

D√
1+e−c

(
Meix+

(
1 − e−c
√

1 + e−c
,

−e−c

1 + e−c

))
∗ δe−c ,Meix+(1, 0)

)
where: - Dr(µ) the r-dilation of µ (i.e. rX ∼ Dr(µ) if X ∼ µ)

- Meix+ denotes the free Meixner law.
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FREE MEIXNER (/POISSON/SEMICIRCULAR) LAW

Free Meixner laws are introduced by Bozejko, Bryc, Saitoh, Yoshida, as analogues of
classical Meixner laws. For a ∈ R, b ≥ 1,

dMeix+(a, b)(t) =
√

4(1 + b)− (t − a)2

2π(bt2 + at + 1)
dt + atoms.

• b = 0: free Poisson law (i.e. Marchenko-Pastur law) for λ > 1

dPoiss+(λ, α)(t) =
1

2παt

√
4λα2 − (t − α(1 + λ))2dt

• a = b = 0: free semicircular law (2π)−1
√

4 − t2dt.
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STRATEGY OF THE PROOF I: φ∗k
tran, CASE c > 0

φN : C(S+
N) → C, φN =

N − 1
N

φtran +
1
N
ε

• Recall that we aim to understand d(φ
∗⌊ 1

2 (N ln(N)+cN)⌋
N , h).

• Consider first d(φ
∗⌊ 1

2 (N ln(N)+cN)⌋
tran , h)

• If c > 0, then φ
∗⌊ 1

2 (N ln(N)+cN)⌋
tran ∈ L1(S+

N) “absolutely continuous”.

d(φ
∗⌊ 1

2 (N ln(N)+cN)⌋
tran , h) =

1
2
∥φ∗⌊ 1

2 (N ln(N)+cN)⌋
tran − h∥L1(S+

N )

≤ 1
2
∥φ∗⌊ 1

2 (N ln(N)+cN)⌋
tran − h∥L2(S+

N )

computable via Fourier analysis and Chebychev polynomials.
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STRATEGY OF THE PROOF II: φ∗k
tran, CASE c < 0

• If c < 0, then φ
∗⌊ 1

2 (N ln(N)+cN)⌋
tran /∈ L1(S+

N) non absolutely continuous

• It suffices to consider C(S+
N)central =C*-subalg generated by

∑
i uii.

d(φ
∗⌊ 1

2 (N ln(N)+cN)⌋
tran , h) = ∥(φ∗⌊ 1

2 (N ln(N)+cN)⌋
tran − h)|C(S+

N )central
∥C(S+

N )∗central

• C(S+
N)central ≃ C([0,N]) ⇝ a classical measure

ˆ N

0
fdm(N)

k = φ∗k
tran(f ).

Proposition (Freslon-Teyssier-W)

m(N)
k = αN(k)δÑ(k) + m̃(N)

k ,

where αN(k) ∈ R and Ñ(k) /∈ [0, 4], and m̃(N)
k ∈ L2([0, 4],Poiss+(1, 1)).
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STRATEGY OF THE PROOF III: FROM φ∗k
tran TO φ∗k

N

• The previous methods lead to the cutoff for φ∗k
tran .

(Contrary to the classical setting; purely quantum!)

• How to pass to φ∗k
N ? φ∗k

N /∈ L1(S+
N) never absolutely continuous!

φN =
N − 1

N
φtran +

1
N
ε

The previous Fourier analytic tools break down.
• Idea: φ∗k

N = randomized φ∗k
tran

- Flip a biased coin with probability 1/N for heads ;
- Tail⇝ pick φtran ; head⇝ do nothing. Xk ∼ Binom(k, N−1

N )

- φ∗k
N = E(φ∗Xk

tran)

Proposition (Freslon-Teyssier-W)
For c ∈ R,

∥φ∗⌊ 1
2 (N ln(N)+cN)⌋

N − φ
∗⌊ 1

2 (N ln(N)+cN)⌋
tran ∥C(S+

N )∗ → 0, as N → ∞.
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Thank you very much!
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