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HOW TO (CLASSICALLY) SHUFFLE CARDS

Poincaré (1912): when we are playing cards, after a sufficiently long time, all the
permutations of cards appear with equal probabilities.

CHAPITRE XVL

QUESTIONS DIVERSES.

2235, Battage des cartes. — Je me suis occupé dans Pin-
Aroduction des problémes relatifs au joueur guoi bat un jeu .
de cartes, Pourquol, quand le jeu a été battu assezlongtemps,
admettons-nous que toutes les permutationsdes caries, c'est-
i-dire tous les ordres dans lesquels ces cartes peuvent étre
rangées, deivent &ire également probables? Clest ce que
nous allous examiner de plus prés.

~+ “random walk theory”
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A “LAZY” CARD SHUFFLE BY RANDOM TRANSPOSITIONS

® Spread the cards on a table;

Select one card uniformly at random, then put it back;

Select a second card in the same way;

Swap the two cards if different;

Otherwise, do nothing.

Interpretation:
® [iran = uniform measure on transpositions in the permutation group Sy
® uUN = %Htran + %5101
® Random walk on Sy driven by un: the distribution at the k-th step is

p (o) = > pn(o1)--pnlox), o € Sn.

01,-+-,0kESN
01 Ok=0
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A “LAZY” CARD SHUFFLE BY RANDOM TRANSPOSITIONS

Question Does this acutally mix the cards ?
Answer Yes. 1iF converges weakly to the Haar measure on Sy.
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A “LAZY” CARD SHUFFLE BY RANDOM TRANSPOSITIONS

Question Does this acutally mix the cards ?
Answer Yes. 1iF converges weakly to the Haar measure on Sy.

Question How and when?
Answer Diaconis-Shahshahani 81”:

¢ Before NIn(N)/2 steps, the distribution stays far from uniform;

e After NIn(N)/2 steps, the distribution suddenly drops to uniform.

d(lﬁ\?v NHaar)

-

“cutoff phenomenon”
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CUTOFF PHENOMENON FOR RANDOM TRANSPOSITIONS

Denote jipaar = Haar measure on Sy. The total variation distance

1
d(ﬂ?\}(a MHaar) = sup ‘N#(A) - ,UJHaar(A)‘ = EHN?\;( - MHaar“l
ACSN

Theorem (Diaconis-Shahshahani 81")

Fore >0,as N — oo

A= ) 51, TN, ) 0

d(:u";\/']C ) MHaar)
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CUTOFF PHENOMENON FOR RANDOM TRANSPOSITIONS

Denote jipaar = Haar measure on Sy. The total variation distance

*, * 1 *
d(/‘l\?a /«‘Haar) ‘= sup |:UI\§((A) - ,UfHaar(A)| = EHN}\;{ - /«‘Haar“l
ACSN

Theorem (Diaconis-Shahshahani 81")

Fore > 0,as N — oo

q (M;IL(l—e)Nln(N)/Z J,uHaar) 1, d( M;]L(l—&-e)Nln(N)/ZJ’ UHaar) — 0.

d(#?\;cv MHaar) i

Simeng Wang (Harbin Institute of Technology) Quantum cutoff



CUTOFF PROFILES

AN s Mstaar)

Nin(N) i
o) &

How does the “cutoff” occur in the short window?
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CUTOFF PROFILES

d(:“‘ﬁv /—"Haar)

\ O(N)

How does the “cutoff” occur in the short window?

Theorem (Teyssier, Ann. Proba. 20")

Forc e Rand N — oo,

>kl n
A(ppf e (N)+CN),MHaar) — d(Poiss(1 + e~¢), Poiss(1)),

where Poiss(\) = Poisson law of parameter \.

“cutoff profile”
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PLAYING CARDS IN THE QUANTUM WORLD

¢ C*-algebra = norm closed *-subalgebra of B(#) for some Hilbert H
= collections of “observables” in physics

¢ (locally compact) topological space 2 <+ commutative C*-algebra Cy(£2) C B(¢2(12))
“quantum topological space” +» noncommutative C*-algebra
* symmetries on topological spaces <+ topological groups

“quantum symmetries on classical/quantum topological spaces”
+ topological quantum groups
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PLAYING CARDS IN THE QUANTUM WORLD

¢ C*-algebra = norm closed *-subalgebra of B(#) for some Hilbert H
= collections of “observables” in physics

¢ (locally compact) topological space 2 <+ commutative C*-algebra Cy(£2) C B(¢2(12))
“quantum topological space” +» noncommutative C*-algebra
* symmetries on topological spaces <+ topological groups

“quantum symmetries on classical/quantum topological spaces”
+ topological quantum groups

“”

Noncommutative ... it is important to solve the
Geometry o

following problems:

Find a nontrivial finite quantum
group of symmetries of the finite
space E.”

— Alain Connes
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PLAYING CARDS IN THE QUANTUM WORLD

® A (classical) permutation matrix C = [cjj]1<;j<n € Sy is such that
Cij S {0, 1}, CCt=Cic=1I

The algebra C(Sy) of functions on Sy is generated by the functions C — c;;.

® Quantum permutations (Shuzhou Wang): Consider the universal C*-algebra A
generated by operators (u;;)1<;j<n s.t. for the matrix U = [u;j]1<; j<n,

wjj = uj; = ug, uut=utu=1.

Intuitive notation: quantum permutation group Sy; = (4, U) and A ="C(Sy,)".
N A R T

o (L) e

bo) o (o) o

1 2 3 4 (3 (f) 0 <<1) 8) 0
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PLAYING CARDS IN THE QUANTUM WORLD

® A (classical) permutation matrix C = [c;j]1<j<n € Sy is such that
Cij € {0, 1}, cct=cCclc=1

The algebra C(Sy) of functions on Sy is generated by the functions C ~ c;;.

® Quantum permutations (Shuzhou Wang): Consider the universal C*-algebra A
generated by operators (u;)1<;j<n s.t. for the matrix U = [u;]1<; j<n,

uij:u;"j:u%j, uuat =utu =1.

Intuitive notation: quantum permutation group Sy; = (A, U) and A =“C(S;)".

® Interpretation in language of quantum physics: u;;’s = observables
measurement on a quantum state { — random permutation

P(i — j) = (§luyl§)

Atserias,Lupini,Mancinska,Roberson,..., 19’-20": quantum permutations much better
than the classicals one when contructing strategies in non-local games on graphs.
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CONVOLUTION AND RANDOM WALKS ON QUANTUM GROUPS

® Analogue of group multiplications: *-homomorphism

N
A C(S;}) — C(SES) ® C(SE\'}), ujj — Zuik & Ugj.
k=1

® Analogue of convolutions: for two states 1, ¢, € C (SK])*,

1% @2 = (1 @ p2) 0 A,

* Analogue of Haar measure: 3 unique state i € C(Sy;)* s.t. for all state ¢ € C(S;)*,
@ xh = hx*y = h, called the Haar state.

* Analogue of total variation distance: the distance in C (S;\;)*, for two states @1, ¢2,

1
dpr,02) = 5 lo1 — @allesey (= s lpap) — e2(p)l)-
2 N p=p*=p*eC(S3)**

Simeng Wang (Harbin Institute of Technology) Quantum cutoff



QUANTUM RANDOM TRANSPOSITIONS

Recall: classical random transpositions given by pn = NN Htran + 51d

® itran is unif distribution on C = {transpositions}. Note that C is a conjugacy class, so
for E = |Sy|! [ad(0)do,

[ tean = [ ENduan (= E)((12).
Sn Sn

e there is a similar conditional expectation E from C(S5;) onto adjoint-invariant
elements. We consider analogously

pran(f) = (T o Ef)((12)), f € C(SY),

where 7 : C(Sy;) = C(Sn) denotes the abelianization. (Intuitively unif distribution on
the quantum conjugacy class of transpositions)

® counite : C(S¥) — C, unique state s.t. € x ¢ = ¢, Vo € C(S3)*.
e Problem: cutoff for oy = M ppran + ye?
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CUTOFF FOR QUANTUM RANDOM TRANSPOSITIONS

N-1

N - C(S]—\’}) — (C, YN = T‘Ptran + NS

1

Theorem (Freslon-Teyssier-W, PTRF 22”)

Fore > 0,as N — oo,

N In(N)

*| (1—e *| (14€
d((pNL( V=5 J,h)—>1, d(SONL( )

Moreover we have the cutoff profile: for c € R, as N — oo,

| L(N'n
d(gONLZ(Nl (N)—i—cN)J’h)

1—e°¢ —e ¢

o
%d(Dm <Me1x <\/ﬁ’1+6_c

where: - D, () the r-dilation of p (i.e. rX ~ Dy(p) if X ~ )
- Meix™ denotes the free Meixner law.

NIn(N)

z 1 So.

)) * Opmc, Meix+(1,0)>
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FREE MEIXNER (/POISSON/SEMICIRCULAR) LAW

Free Meixner laws are introduced by Bozejko, Bryc, Saitoh, Yoshida, as analogues of
classical Meixner laws. Fora € R,b > 1,

" _ VA —a)
dMeix ™" (a,b)(t) = 27r(bt2 +at + 1 dt + atoms.

® b = 0: free Poisson law (i.e. Marchenko-Pastur law) for A > 1

dPoiss™ (A, a) (1) = 5 t\/4)\a2 (f — a1 + \))2dt

® g =b = 0: free semicircular law (27)~'\v4 — £2dt.
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STRATEGY OF THE PROOF I: @i CASEc > 0

tran’

N-1 1

N Ptran T NE

PN - C(SI—\’—I) - C: PN =

® Recall that we aim to understand d(py *[3(NIn(N)+eN)]

e Consider first d(@trgn(N In(N)+cN)] )

* Lz (NIn(N)+cN)|
tran

h).

e [fc >0, then e L1(S) “absolutely continuous”.
¥ N y

*| 5 (NIn(N)+cN) (Nln )+cN)
d(@trlgm (e J’h) || t'ran (e J_h||L1(51-\~/_)

(Nln( )+cN) | I
_ZH tran - ”LZ(Sﬁ)

computable via Fourier analysis and Chebychev polynomials.
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STRATEGY OF THE PROOF II: p*  CASEc < 0

tran’

*L%(N In(N)+cN

tran ) ¢ L1(S};) non absolutely continuous

e [fc <0, then ¢
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STRATEGY OF THE PROOF II: ¢  CASEc < 0

* L%(N In(N)+cN) |
tran

e [fc <0, then ¢
e It suffices to consider C (S;\L[)mntral =C*-subalg generated by » . u;;.

¢ L1(S};) non absolutely continuous

[ (N In(N)+cN) | [3(NIn(N)+cN)|
A(Pream ) = (e ~W)lestyemallcsi,
° C(S;\“])mntral ~ C([0,N]) ~ a classical measure

N
/0 fam®™ = otk ().
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STRATEGY OF THE PROOF II: ¢  CASEc < 0

* L%(N In(N)+cN) |
tran

e [fc <0, then ¢
e It suffices to consider C (Sﬁ)central =C*-subalg generated by » . u;;.

¢ L1(S};) non absolutely continuous

[ (N In(N)+cN) | [3(NIn(N)+cN)|
A(Pream ) = (e T D)lestemallosi
° C(S;\“])mntral ~ C([0,N]) ~ a classical measure

N
/0 fam®™ = otk ().

Proposition (Freslon-Teyssier-W)

N ~ (N
m) = an (K)o + g

where an (k) € R and N(k) ¢ [0,4], and (") € 12([0,4], Poiss™(1,1)).
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STRATEGY OF THE PROOF III: FROM ik TO 3k

* The previous methods lead to the cutoff for ¢k .

(Contrary to the classical setting; purely quantum!)
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STRATEGY OF THE PROOF III: FROM ik TO 3k

* The previous methods lead to the cutoff for ¢k .
(Contrary to the classical setting; purely quantum!)

* How to pass to ¢3i? ¢iF ¢ L1(Sy;) never absolutely continuous!

N1 1
PN = N Ptran N5

The previous Fourier analytic tools break down.
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STRATEGY OF THE PROOF III: FROM ik TO 3k

* The previous methods lead to the cutoff for ¢k .
(Contrary to the classical setting; purely quantum!)

* How to pass to ¢3i? ¢iF ¢ L1(Sy;) never absolutely continuous!

N1 1
PN = N Ptran N5

The previous Fourier analytic tools break down.

e Idea: ¥ = randomized ;X ,
- Flip a biased coin with probability 1/N for heads ;
- Tail ~ pick ¢an ; head ~» do nothing. X; ~ Binom(k, %)

*X
- 90?\? = E(Sotrag)
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STRATEGY OF THE PROOF III: FROM ik TO 3k

* The previous methods lead to the cutoff for ¢k .
(Contrary to the classical setting; purely quantum!)

* How to pass to ¢3i? ¢iF ¢ L1(Sy;) never absolutely continuous!

N1 1
PN = N Ptran N5

The previous Fourier analytic tools break down.

e Idea: ¥ = randomized ;X ,
- Flip a biased coin with probability 1/N for heads ;
- Tail ~ pick ¢an ; head ~» do nothing. X; ~ Binom(k, %)

*X
- 90?\? = E(Sotrag)

Proposition (Freslon-Teyssier-W)

Forc € R,

Nln (N)+cN) | *|_ (NIn(N)+cN) |
|| ‘ — (ptran ‘ ”C(S;]-)* — 0, as N — oco.

= =T = = Tyt
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Thank you very much!
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